IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1502.06434.html
   My bibliography  Save this paper

ANN Model to Predict Stock Prices at Stock Exchange Markets

Author

Listed:
  • B. W. Wanjawa
  • L. Muchemi

Abstract

Stock exchanges are considered major players in financial sectors of many countries. Most Stockbrokers, who execute stock trade, use technical, fundamental or time series analysis in trying to predict stock prices, so as to advise clients. However, these strategies do not usually guarantee good returns because they guide on trends and not the most likely price. It is therefore necessary to explore improved methods of prediction. The research proposes the use of Artificial Neural Network that is feedforward multi-layer perceptron with error backpropagation and develops a model of configuration 5:21:21:1 with 80% training data in 130,000 cycles. The research develops a prototype and tests it on 2008-2012 data from stock markets e.g. Nairobi Securities Exchange and New York Stock Exchange, where prediction results show MAPE of between 0.71% and 2.77%. Validation done with Encog and Neuroph realized comparable results. The model is thus capable of prediction on typical stock markets.

Suggested Citation

  • B. W. Wanjawa & L. Muchemi, 2014. "ANN Model to Predict Stock Prices at Stock Exchange Markets," Papers 1502.06434, arXiv.org.
  • Handle: RePEc:arx:papers:1502.06434
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1502.06434
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziyuan Xia & Jeffery Chen & Anchen Sun, 2021. "Mining the Relationship Between COVID-19 Sentiment and Market Performance," Papers 2101.02587, arXiv.org, revised Mar 2023.
    2. Barack Wamkaya Wanjawa, 2016. "Evaluating the Performance of ANN Prediction System at Shanghai Stock Market in the Period 21-Sep-2016 to 11-Oct-2016," Papers 1612.02666, arXiv.org.
    3. Jessie Sun, 2019. "A Stock Selection Method Based on Earning Yield Forecast Using Sequence Prediction Models," Papers 1905.04842, arXiv.org.
    4. Akshit Kurani & Pavan Doshi & Aarya Vakharia & Manan Shah, 2023. "A Comprehensive Comparative Study of Artificial Neural Network (ANN) and Support Vector Machines (SVM) on Stock Forecasting," Annals of Data Science, Springer, vol. 10(1), pages 183-208, February.
    5. Oluwaseun Oyebode & Desmond Eseoghene Ighravwe, 2019. "Urban Water Demand Forecasting: A Comparative Evaluation of Conventional and Soft Computing Techniques," Resources, MDPI, vol. 8(3), pages 1-18, September.
    6. Kerda Varaku, 2019. "Stock Price Forecasting and Hypothesis Testing Using Neural Networks," Papers 1908.11212, arXiv.org.
    7. Liu, Keyan & Zhou, Jianan & Dong, Dayong, 2021. "Improving stock price prediction using the long short-term memory model combined with online social networks," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
    8. Rebecca Abraham & Mahmoud El Samad & Amer M. Bakhach & Hani El-Chaarani & Ahmad Sardouk & Sam El Nemar & Dalia Jaber, 2022. "Forecasting a Stock Trend Using Genetic Algorithm and Random Forest," JRFM, MDPI, vol. 15(5), pages 1-18, April.
    9. Barack Wamkaya Wanjawa, 2016. "Predicting Future Shanghai Stock Market Price using ANN in the Period 21-Sep-2016 to 11-Oct-2016," Papers 1609.05394, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1502.06434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.