IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1904.13329.html
   My bibliography  Save this paper

Supervised Machine Learning for Eliciting Individual Demand

Author

Listed:
  • John A. Clithero
  • Jae Joon Lee
  • Joshua Tasoff

Abstract

Direct elicitation, guided by theory, is the standard method for eliciting latent preferences. The canonical direct-elicitation approach for measuring individuals' valuations for goods is the Becker-DeGroot-Marschak procedure, which generates willingness-to-pay (WTP) values that are imprecise and systematically biased by understating valuations. We show that enhancing elicited WTP values with supervised machine learning (SML) can substantially improve estimates of peoples' out-of-sample purchase behavior. Furthermore, swapping WTP data with choice data generated from a simple task, two-alternative forced choice, leads to comparable performance. Combining all the data with the best-performing SML methods yields large improvements in predicting out-of-sample purchases. We quantify the benefit of using various SML methods in conjunction with using different types of data. Our results suggest that prices set by SML would increase revenue by 28% over using the stated WTP, with the same data.

Suggested Citation

  • John A. Clithero & Jae Joon Lee & Joshua Tasoff, 2019. "Supervised Machine Learning for Eliciting Individual Demand," Papers 1904.13329, arXiv.org, revised Feb 2021.
  • Handle: RePEc:arx:papers:1904.13329
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1904.13329
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James Berry & Greg Fischer & Raymond Guiteras, 2020. "Eliciting and Utilizing Willingness to Pay: Evidence from Field Trials in Northern Ghana," Journal of Political Economy, University of Chicago Press, vol. 128(4), pages 1436-1473.
    2. Jeffrey Naecker, 2015. "The Lives of Others: Predicting Donations with Non-Choice Responses," Discussion Papers 15-021, Stanford Institute for Economic Policy Research.
    3. Noussair, Charles & Robin, Stephane & Ruffieux, Bernard, 2004. "Revealing consumers' willingness-to-pay: A comparison of the BDM mechanism and the Vickrey auction," Journal of Economic Psychology, Elsevier, vol. 25(6), pages 725-741, December.
    4. Jordi Brandts & Gary Charness, 2011. "The strategy versus the direct-response method: a first survey of experimental comparisons," Experimental Economics, Springer;Economic Science Association, vol. 14(3), pages 375-398, September.
    5. Clithero, John A., 2018. "Improving out-of-sample predictions using response times and a model of the decision process," Journal of Economic Behavior & Organization, Elsevier, vol. 148(C), pages 344-375.
    6. Lisa Anderson & Jennifer Mellor, 2009. "Are risk preferences stable? Comparing an experimental measure with a validated survey-based measure," Journal of Risk and Uncertainty, Springer, vol. 39(2), pages 137-160, October.
    7. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    8. Alec Smith & B. Douglas Bernheim & Colin F. Camerer & Antonio Rangel, 2014. "Neural Activity Reveals Preferences without Choices," American Economic Journal: Microeconomics, American Economic Association, vol. 6(2), pages 1-36, May.
    9. Holger Müller & Steffen Voigt, 2010. "Are there gambling effects in incentive-compatible elicitations of reservation prices? An empirical analysis of the BDM-mechanism," FEMM Working Papers 100021, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    10. Peysakhovich, Alexander & Naecker, Jeffrey, 2017. "Using methods from machine learning to evaluate behavioral models of choice under risk and ambiguity," Journal of Economic Behavior & Organization, Elsevier, vol. 133(C), pages 373-384.
    11. B. Douglas Bernheim & Daniel Bjorkegren & Jeffrey Naecker & Antonio Rangel, 2013. "Non-Choice Evaluations Predict Behavioral Responses to Changes in Economic Conditions," NBER Working Papers 19269, National Bureau of Economic Research, Inc.
    12. Charles R. Plott & Kathryn Zeiler, 2005. "The Willingness to Pay–Willingness to Accept Gap, the "Endowment Effect," Subject Misconceptions, and Experimental Procedures for Eliciting Valuations," American Economic Review, American Economic Association, vol. 95(3), pages 530-545, June.
    13. Catherine C. Eckel & Philip J. Grossman, 2008. "Forecasting Risk Attitudes: An Experimental Study Using Actual and Forecast Gamble Choices," Monash Economics Working Papers archive-01, Monash University, Department of Economics.
    14. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    15. Charles A. Holt & Susan K. Laury, 2002. "Risk Aversion and Incentive Effects," American Economic Review, American Economic Association, vol. 92(5), pages 1644-1655, December.
    16. Steffen Andersen & Glenn W. Harrison & Morten I. Lau & E. Elisabet Rutström, 2008. "Lost In State Space: Are Preferences Stable?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 49(3), pages 1091-1112, August.
    17. Timothy N. Cason & Charles R. Plott, 2014. "Misconceptions and Game Form Recognition: Challenges to Theories of Revealed Preference and Framing," Journal of Political Economy, University of Chicago Press, vol. 122(6), pages 1235-1270.
    18. Hey, John D. & Carbone, Enrica, 1995. "Stochastic choice with deterministic preferences: An experimental investigation," Economics Letters, Elsevier, vol. 47(2), pages 161-167, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halko, Marja-Liisa & Lappalainen, Olli & Sääksvuori, Lauri, 2021. "Do non-choice data reveal economic preferences? Evidence from biometric data and compensation-scheme choice," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 87-104.
    2. Bull, Charles & Courty, Pascal & Doyon, Maurice & Rondeau, Daniel, 2019. "Failure of the Becker–DeGroot–Marschak mechanism in inexperienced subjects: New tests of the game form misconception hypothesis," Journal of Economic Behavior & Organization, Elsevier, vol. 159(C), pages 235-253.
    3. David de Meza & Diane Reyniers, 2013. "Debiasing the Becker – DeGroot – Marschak valuation mechanism," Economics Bulletin, AccessEcon, vol. 33(2), pages 1446-1456.
    4. James Berry & Greg Fischer & Raymond Guiteras, 2020. "Eliciting and Utilizing Willingness to Pay: Evidence from Field Trials in Northern Ghana," Journal of Political Economy, University of Chicago Press, vol. 128(4), pages 1436-1473.
    5. Arnaud Reynaud & Stéphane Couture, 2012. "Stability of risk preference measures: results from a field experiment on French farmers," Theory and Decision, Springer, vol. 73(2), pages 203-221, August.
    6. Galizzi, Matteo M. & Machado, Sara R. & Miniaci, Raffaele, 2016. "Temporal stability, cross-validity, and external validity of risk preferences measures: experimental evidence from a UK representative sample," LSE Research Online Documents on Economics 67554, London School of Economics and Political Science, LSE Library.
    7. Anwesha Bandyopadhyay & Lutfunnahar Begum & Philip J. Grossman, 2021. "Gender differences in the stability of risk attitudes," Journal of Risk and Uncertainty, Springer, vol. 63(2), pages 169-201, October.
    8. Lidia Ceriani & Sergio Olivieri & Marco Ranzani, 2023. "Housing, imputed rent, and household welfare," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 21(1), pages 131-168, March.
    9. Jonathan Chapman & Erik Snowberg & Stephanie Wang & Colin Camerer, 2018. "Loss Attitudes in the U.S. Population: Evidence from Dynamically Optimized Sequential Experimentation (DOSE)," NBER Working Papers 25072, National Bureau of Economic Research, Inc.
    10. Lisa R. Anderson & Gregory DeAngelo & Winand Emons & Beth Freeborn & Hannes Lang, 2017. "Penalty Structures And Deterrence In A Two-Stage Model: Experimental Evidence," Economic Inquiry, Western Economic Association International, vol. 55(4), pages 1833-1867, October.
    11. Jan-Erik Loennqvist & Markku Verkasalo & Gari Walkowitz & Philipp C. Wichardt, 2011. "Measuring Individual Risk Attitudes in the Lab: Task or Ask? An Empirical Comparison," Cologne Graduate School Working Paper Series 02-03, Cologne Graduate School in Management, Economics and Social Sciences.
    12. Jack, B. Kelsey & McDermott, Kathryn & Sautmann, Anja, 2022. "Multiple price lists for willingness to pay elicitation," Journal of Development Economics, Elsevier, vol. 159(C).
    13. Jonathan Chapman & Mark Dean & Pietro Ortoleva & Erik Snowberg & Colin Camerer, 2018. "Econographics," CESifo Working Paper Series 7202, CESifo.
      • Jonathan Chapman & Mark Dean & Pietro Ortoleva & Erik Snowberg & Colin Camerer, 2018. "Econographics," NBER Working Papers 24931, National Bureau of Economic Research, Inc.
    14. Lichters, Marcel & Wackershauser, Verena & Han, Shixing & Vogt, Bodo, 2019. "On the applicability of the BDM mechanism in product evaluation," Journal of Retailing and Consumer Services, Elsevier, vol. 51(C), pages 1-7.
    15. Colin F. Camerer & Gideon Nave & Alec Smith, 2019. "Dynamic Unstructured Bargaining with Private Information: Theory, Experiment, and Outcome Prediction via Machine Learning," Management Science, INFORMS, vol. 65(4), pages 1867-1890, April.
    16. Stefan Zeisberger & Dennis Vrecko & Thomas Langer, 2012. "Measuring the time stability of Prospect Theory preferences," Theory and Decision, Springer, vol. 72(3), pages 359-386, March.
    17. Dasgupta, Utteeyo & Mani, Subha & Sharma, Smriti & Singhal, Saurabh, 2016. "Eliciting Risk Preferences: Firefighting in the Field," IZA Discussion Papers 9765, Institute of Labor Economics (IZA).
    18. Tamás Csermely & Alexander Rabas, 2016. "How to reveal people’s preferences: Comparing time consistency and predictive power of multiple price list risk elicitation methods," Journal of Risk and Uncertainty, Springer, vol. 53(2), pages 107-136, December.
    19. Holzmeister, Felix & Stefan, Matthias, 2019. "The Risk Elicitation Puzzle Revisited: Across-Methods (In)consistency?," OSF Preprints pj9u2, Center for Open Science.
    20. Marielle Brunette & Jonas Ngouhouo-Poufoun, 2022. "Are risk preferences consistent across elicitation procedures? A field experiment in Congo basin countries," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 47(1), pages 122-140, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1904.13329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.