IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1902.08938.html
   My bibliography  Save this paper

Working Paper: Improved Stock Price Forecasting Algorithm based on Feature-weighed Support Vector Regression by using Grey Correlation Degree

Author

Listed:
  • Quanxi Wang

Abstract

With the widespread engineering applications ranging from artificial intelligence and big data decision-making, originally a lot of tedious financial data processing, processing and analysis have become more and more convenient and effective. This paper aims to improve the accuracy of stock price forecasting. It improves the support vector machine regression algorithm by using grey correlation analysis (GCA) and improves the accuracy of stock prediction. This article first divides the factors affecting the stock price movement into behavioral factors and technical factors. The behavioral factors mainly include weather indicators and emotional indicators. The technical factors mainly include the daily closing data and the HS 300 Index, and then measure relation through the method of grey correlation analysis. The relationship between the stock price and its impact factors during the trading day, and this relationship is transformed into the characteristic weight of each impact factor. The weight of the impact factors of all trading days is weighted by the feature weight, and finally the support vector regression (SVR) is used. The forecast of the revised stock trading data was compared based on the forecast results of technical indicators (MSE, MAE, SCC, and DS) and unmodified transaction data, and it was found that the forecast results were significantly improved.

Suggested Citation

  • Quanxi Wang, 2019. "Working Paper: Improved Stock Price Forecasting Algorithm based on Feature-weighed Support Vector Regression by using Grey Correlation Degree," Papers 1902.08938, arXiv.org.
  • Handle: RePEc:arx:papers:1902.08938
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1902.08938
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    2. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    3. Baker, Malcolm & Stein, Jeremy C., 2004. "Market liquidity as a sentiment indicator," Journal of Financial Markets, Elsevier, vol. 7(3), pages 271-299, June.
    4. Saunders, Edward M, Jr, 1993. "Stock Prices and Wall Street Weather," American Economic Review, American Economic Association, vol. 83(5), pages 1337-1345, December.
    5. David Hirshleifer, 2001. "Investor Psychology and Asset Pricing," Journal of Finance, American Finance Association, vol. 56(4), pages 1533-1597, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Labidi, Chiraz & Yaakoubi, Soumaya, 2016. "Investor sentiment and aggregate volatility pricing," The Quarterly Review of Economics and Finance, Elsevier, vol. 61(C), pages 53-63.
    2. David Hirshleife, 2015. "Behavioral Finance," Annual Review of Financial Economics, Annual Reviews, vol. 7(1), pages 133-159, December.
    3. Bui, Dien Giau & Kong, De-Rong & Lin, Chih-Yung & Lin, Tse-Chun, 2023. "Momentum in machine learning: Evidence from the Taiwan stock market," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    4. Hu, Zhijun & Sun, Ping-Wen, 2024. "Salience theory, investor sentiment, and commonality in sentiment: Evidence from the Chinese stock market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 42(C).
    5. Nguyen, Hung T. & Pham, Mia Hang, 2021. "Air pollution and behavioral biases: Evidence from stock market anomalies," Journal of Behavioral and Experimental Finance, Elsevier, vol. 29(C).
    6. Seok, Sangik & Cho, Hoon & Ryu, Doojin, 2024. "Dual effects of investor sentiment and uncertainty in financial markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 300-315.
    7. Vidal-García, Javier & Vidal, Marta, 2014. "Seasonality and idiosyncratic risk in mutual fund performance," European Journal of Operational Research, Elsevier, vol. 233(3), pages 613-624.
    8. Merkle, Christoph & Sextroh, Christoph J., 2021. "Value and momentum from investors’ perspective: Evidence from professionals’ risk-ratings," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 159-178.
    9. Dimitrios Kourtidis & Željko Šević & Prodromos Chatzoglou, 2016. "Mood and stock returns: evidence from Greece," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 43(2), pages 242-258, May.
    10. Chang, Shao-Chi & Chen, Sheng-Syan & Chou, Robin K. & Lin, Yueh-Hsiang, 2008. "Weather and intraday patterns in stock returns and trading activity," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1754-1766, September.
    11. Bruno Feunou & Jean-Sébastien Fontaine & Abderrahim Taamouti & Roméo Tédongap, 2014. "Risk Premium, Variance Premium, and the Maturity Structure of Uncertainty," Review of Finance, European Finance Association, vol. 18(1), pages 219-269.
    12. Dimitrios D. Thomakos & Michail S. Koubouros, 2011. "The Role of Realised Volatility in the Athens Stock Exchange," Multinational Finance Journal, Multinational Finance Journal, vol. 15(1-2), pages 87-124, March - J.
    13. John H. Cochrane, 1999. "New facts in finance," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 23(Q III), pages 36-58.
    14. Turan G. Bali & Robert F. Engle & Yi Tang, 2017. "Dynamic Conditional Beta Is Alive and Well in the Cross Section of Daily Stock Returns," Management Science, INFORMS, vol. 63(11), pages 3760-3779, November.
    15. Chen, Jian & Jiang, Fuwei & Liu, Yangshu & Tu, Jun, 2017. "International volatility risk and Chinese stock return predictability," Journal of International Money and Finance, Elsevier, vol. 70(C), pages 183-203.
    16. Zhong, Angel, 2018. "Idiosyncratic volatility in the Australian equity market," Pacific-Basin Finance Journal, Elsevier, vol. 50(C), pages 105-125.
    17. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2015. "The impact of financial crises on the risk–return tradeoff and the leverage effect," Economic Modelling, Elsevier, vol. 49(C), pages 407-418.
    18. Jyri Kinnunen & Minna Martikainen, 2017. "Expected Returns and Idiosyncratic Risk: Industry-Level Evidence from Russia," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 53(11), pages 2528-2544, November.
    19. Hyein Shim & Maria H. Kim & Doojin Ryu, 2017. "Effects of intraday weather changes on asset returns and volatilities," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 35(2), pages 301-330.
    20. Stefano DellaVigna & Joshua M. Pollet, 2005. "Attention, Demographics, and the Stock Market," NBER Working Papers 11211, National Bureau of Economic Research, Inc.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1902.08938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.