IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1812.10876.html
   My bibliography  Save this paper

Efficient hedging under ambiguity in continuous time

Author

Listed:
  • Ludovic Tangpi

Abstract

It is well known that the minimal superhedging price of a contingent claim is too high for practical use. In a continuous-time model uncertainty framework, we consider a relaxed hedging criterion based on acceptable shortfall risks. Combining existing aggregation and convex dual representation theorems, we derive duality results for the minimal price on the set of upper semicontinuous discounted claims.

Suggested Citation

  • Ludovic Tangpi, 2018. "Efficient hedging under ambiguity in continuous time," Papers 1812.10876, arXiv.org, revised Mar 2019.
  • Handle: RePEc:arx:papers:1812.10876
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1812.10876
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ariel Neufeld & Marcel Nutz, 2012. "Superreplication under Volatility Uncertainty for Measurable Claims," Papers 1208.6486, arXiv.org, revised Apr 2013.
    2. M. Kaina & L. Rüschendorf, 2009. "On convex risk measures on L p -spaces," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 475-495, July.
    3. Zhaoxu Hou & Jan Obloj, 2015. "On robust pricing-hedging duality in continuous time," Papers 1503.02822, arXiv.org, revised Jul 2015.
    4. Marcel Nutz & Ramon van Handel, 2012. "Constructing Sublinear Expectations on Path Space," Papers 1205.2415, arXiv.org, revised Apr 2013.
    5. Soner, H. Mete & Touzi, Nizar & Zhang, Jianfeng, 2011. "Martingale representation theorem for the G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 121(2), pages 265-287, February.
    6. Elyès Jouini & Walter Schachermayer & Nizar Touzi, 2006. "Law Invariant Risk Measures Have the Fatou Property," Post-Print halshs-00176522, HAL.
    7. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929, arXiv.org, revised Feb 2013.
    8. Birgit Rudloff, 2007. "Convex Hedging in Incomplete Markets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 437-452.
    9. repec:dau:papers:123456789/342 is not listed on IDEAS
    10. Patrick Cheridito & Michael Kupper & Ludovic Tangpi, 2016. "Duality formulas for robust pricing and hedging in discrete time," Papers 1602.06177, arXiv.org, revised Sep 2017.
    11. Matteo Burzoni, 2015. "Arbitrage and Hedging in model-independent markets with frictions," Papers 1512.01488, arXiv.org, revised Aug 2016.
    12. Nutz, Marcel & van Handel, Ramon, 2013. "Constructing sublinear expectations on path space," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 3100-3121.
    13. B. Acciaio & M. Beiglböck & F. Penkner & W. Schachermayer, 2016. "A Model-Free Version Of The Fundamental Theorem Of Asset Pricing And The Super-Replication Theorem," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 233-251, April.
    14. Hans FÃllmer & Peter Leukert, 2000. "Efficient hedging: Cost versus shortfall risk," Finance and Stochastics, Springer, vol. 4(2), pages 117-146.
    15. Aharon Ben‐Tal & Marc Teboulle, 2007. "An Old‐New Concept Of Convex Risk Measures: The Optimized Certainty Equivalent," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 449-476, July.
    16. Jocelyne Bion-Nadal & Giulia Nunno, 2013. "Dynamic no-good-deal pricing measures and extension theorems for linear operators on L ∞," Finance and Stochastics, Springer, vol. 17(3), pages 587-613, July.
    17. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Muhle-Karbe & Marcel Nutz, 2018. "A risk-neutral equilibrium leading to uncertain volatility pricing," Finance and Stochastics, Springer, vol. 22(2), pages 281-295, April.
    2. Anna Aksamit & Shuoqing Deng & Jan Obl'oj & Xiaolu Tan, 2016. "Robust pricing--hedging duality for American options in discrete time financial markets," Papers 1604.05517, arXiv.org, revised Apr 2017.
    3. Johannes Muhle-Karbe & Marcel Nutz, 2016. "A Risk-Neutral Equilibrium Leading to Uncertain Volatility Pricing," Papers 1612.09152, arXiv.org, revised Jan 2018.
    4. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    5. Mun-Chol Kim & Song-Chol Ryom, 2022. "Pathwise superhedging under proportional transaction costs," Mathematics and Financial Economics, Springer, volume 16, number 4, March.
    6. Julian Sester, 2023. "On intermediate Marginals in Martingale Optimal Transportation," Papers 2307.09710, arXiv.org, revised Nov 2023.
    7. Ariel Neufeld & Julian Sester, 2021. "A deep learning approach to data-driven model-free pricing and to martingale optimal transport," Papers 2103.11435, arXiv.org, revised Dec 2022.
    8. Daniel Bartl & Michael Kupper & David J. Promel & Ludovic Tangpi, 2017. "Duality for pathwise superhedging in continuous time," Papers 1705.02933, arXiv.org, revised Apr 2019.
    9. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    10. Matteo Burzoni & Marco Frittelli & Zhaoxu Hou & Marco Maggis & Jan Ob{l}'oj, 2016. "Pointwise Arbitrage Pricing Theory in Discrete Time," Papers 1612.07618, arXiv.org, revised Feb 2018.
    11. Sebastian Herrmann & Johannes Muhle-Karbe & Frank Thomas Seifried, 2016. "Hedging with Small Uncertainty Aversion," Papers 1605.06429, arXiv.org.
    12. Francesca Biagini & Yinglin Zhang, 2017. "Reduced-form framework under model uncertainty," Papers 1707.04475, arXiv.org, revised Mar 2018.
    13. Daniel Bartl, 2016. "Conditional nonlinear expectations," Papers 1612.09103, arXiv.org, revised Mar 2019.
    14. Sebastian Herrmann & Johannes Muhle-Karbe & Frank Thomas Seifried, 2017. "Hedging with small uncertainty aversion," Finance and Stochastics, Springer, vol. 21(1), pages 1-64, January.
    15. Matteo Burzoni & Marco Frittelli & Zhaoxu Hou & Marco Maggis & Jan Obłój, 2019. "Pointwise Arbitrage Pricing Theory in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 1034-1057, August.
    16. Mathias Beiglböck & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Prömel, 2017. "Pathwise superreplication via Vovk’s outer measure," Finance and Stochastics, Springer, vol. 21(4), pages 1141-1166, October.
    17. Marcel Nutz, 2013. "Utility Maximization under Model Uncertainty in Discrete Time," Papers 1307.3597, arXiv.org.
    18. Alessandro Doldi & Marco Frittelli, 2023. "Entropy martingale optimal transport and nonlinear pricing–hedging duality," Finance and Stochastics, Springer, vol. 27(2), pages 255-304, April.
    19. Nutz, Marcel, 2015. "Robust superhedging with jumps and diffusion," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4543-4555.
    20. Sergey Nadtochiy & Jan Obłój, 2017. "Robust Trading Of Implied Skew," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-41, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1812.10876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.