IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1811.11265.html
   My bibliography  Save this paper

Static vs Adaptive Strategies for Optimal Execution with Signals

Author

Listed:
  • Claudio Bellani
  • Damiano Brigo
  • Alex Done
  • Eyal Neuman

Abstract

We compare optimal static and dynamic solutions in trade execution. An optimal trade execution problem is considered where a trader is looking at a short-term price predictive signal while trading. When the trader creates an instantaneous market impact, it is shown that transaction costs of optimal adaptive strategies are substantially lower than the corresponding costs of the optimal static strategy. In the same spirit, in the case of transient impact it is shown that strategies that observe the signal a finite number of times can dramatically reduce the transaction costs and improve the performance of the optimal static strategy.

Suggested Citation

  • Claudio Bellani & Damiano Brigo & Alex Done & Eyal Neuman, 2018. "Static vs Adaptive Strategies for Optimal Execution with Signals," Papers 1811.11265, arXiv.org, revised Jul 2019.
  • Handle: RePEc:arx:papers:1811.11265
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1811.11265
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander Lipton & Umberto Pesavento & Michael G Sotiropoulos, 2013. "Trade arrival dynamics and quote imbalance in a limit order book," Papers 1312.0514, arXiv.org.
    2. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    3. Damiano Brigo & Clément Piat, 2018. "Static Versus Adapted Optimal Execution Strategies in Two Benchmark Trading Models," World Scientific Book Chapters, in: Kathrin Glau & Daniël Linders & Aleksey Min & Matthias Scherer & Lorenz Schneider & Rudi Zagst (ed.), Innovations in Insurance, Risk- and Asset Management, chapter 10, pages 239-273, World Scientific Publishing Co. Pte. Ltd..
    4. Jim Gatheral & Alexander Schied, 2011. "Optimal Trade Execution Under Geometric Brownian Motion In The Almgren And Chriss Framework," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 353-368.
    5. Alexander Schied, 2012. "A control problem with fuel constraint and Dawson-Watanabe superprocesses," Papers 1207.5809, arXiv.org, revised Dec 2013.
    6. Charles-Albert Lehalle & Eyal Neuman, 2019. "Incorporating signals into optimal trading," Finance and Stochastics, Springer, vol. 23(2), pages 275-311, April.
    7. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    8. Kathrin Glau & Daniël Linders & Aleksey Min & Matthias Scherer & Lorenz Schneider & Rudi Zagst, 2018. "Innovations in Insurance, Risk- and Asset Management," Post-Print hal-02298297, HAL.
    9. Forsyth, P.A. & Kennedy, J.S. & Tse, S.T. & Windcliff, H., 2012. "Optimal trade execution: A mean quadratic variation approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1971-1991.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles-Albert Lehalle & Eyal Neuman, 2019. "Incorporating signals into optimal trading," Finance and Stochastics, Springer, vol. 23(2), pages 275-311, April.
    2. Claudio Bellani & Damiano Brigo, 2021. "Mechanics of good trade execution in the framework of linear temporary market impact," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 143-163, January.
    3. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    4. Eyal Neuman & Alexander Schied, 2016. "Optimal portfolio liquidation in target zone models and catalytic superprocesses," Finance and Stochastics, Springer, vol. 20(2), pages 495-509, April.
    5. Paulwin Graewe & Ulrich Horst, 2016. "Optimal Trade Execution with Instantaneous Price Impact and Stochastic Resilience," Papers 1611.03435, arXiv.org, revised Jul 2017.
    6. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    7. Marcello Monga, 2024. "Automated Market Making and Decentralized Finance," Papers 2407.16885, arXiv.org.
    8. Arne Lokka & Junwei Xu, 2020. "Optimal liquidation trajectories for the Almgren-Chriss model with Levy processes," Papers 2002.03376, arXiv.org, revised Sep 2020.
    9. Philippe Bergault & Fayc{c}al Drissi & Olivier Gu'eant, 2021. "Multi-asset optimal execution and statistical arbitrage strategies under Ornstein-Uhlenbeck dynamics," Papers 2103.13773, arXiv.org, revised Mar 2022.
    10. Christoph Belak & Johannes Muhle-Karbe & Kevin Ou, 2018. "Optimal Trading with General Signals and Liquidation in Target Zone Models," Papers 1808.00515, arXiv.org.
    11. Eyal Neuman & Moritz Vo{ss}, 2020. "Optimal Signal-Adaptive Trading with Temporary and Transient Price Impact," Papers 2002.09549, arXiv.org, revised Jan 2022.
    12. Qixuan Luo & Shijia Song & Handong Li, 2023. "Research on the Effects of Liquidation Strategies in the Multi-asset Artificial Market," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1721-1750, December.
    13. Lokka, A. & Xu, Junwei, 2020. "Optimal liquidation trajectories for the Almgren-Chriss model," LSE Research Online Documents on Economics 106977, London School of Economics and Political Science, LSE Library.
    14. Erhan Bayraktar & Alexander Munk, 2017. "Mini-Flash Crashes, Model Risk, and Optimal Execution," Papers 1705.09827, arXiv.org, revised Aug 2018.
    15. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    16. Michael Karpe, 2020. "An overall view of key problems in algorithmic trading and recent progress," Papers 2006.05515, arXiv.org.
    17. Christopher Lorenz & Alexander Schied, 2013. "Drift dependence of optimal trade execution strategies under transient price impact," Finance and Stochastics, Springer, vol. 17(4), pages 743-770, October.
    18. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2022. "Portfolio liquidation games with self‐exciting order flow," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1020-1065, October.
    19. Eyal Neuman & Yufei Zhang, 2023. "Statistical Learning with Sublinear Regret of Propagator Models," Papers 2301.05157, arXiv.org.
    20. Ningyuan Chen & Steven Kou & Chun Wang, 2018. "A Partitioning Algorithm for Markov Decision Processes with Applications to Market Microstructure," Management Science, INFORMS, vol. 64(2), pages 784-803, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1811.11265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.