IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1811.06361.html
   My bibliography  Save this paper

On approximations of Value at Risk and Expected Shortfall involving kurtosis

Author

Listed:
  • Matyas Barczy
  • Adam Dudas
  • Jozsef Gall

Abstract

We derive new approximations for the Value at Risk and the Expected Shortfall at high levels of loss distributions with positive skewness and excess kurtosis, and we describe their precisions for notable ones such as for exponential, Pareto type I, lognormal and compound (Poisson) distributions. Our approximations are motivated by that kind of extensions of the so-called Normal Power Approximation, used for approximating the cumulative distribution function of a random variable, which incorporate not only the skewness but the kurtosis of the random variable in question as well. We show the performance of our approximations in numerical examples and we also give comparisons with some known ones in the literature.

Suggested Citation

  • Matyas Barczy & Adam Dudas & Jozsef Gall, 2018. "On approximations of Value at Risk and Expected Shortfall involving kurtosis," Papers 1811.06361, arXiv.org, revised Dec 2020.
  • Handle: RePEc:arx:papers:1811.06361
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1811.06361
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kauppi, Lauri & Ojantakanen, Pertti, 1969. "Approximations of the generalised Poisson function," ASTIN Bulletin, Cambridge University Press, vol. 5(2), pages 213-226, May.
    2. Seri, Raffaello & Choirat, Christine, 2015. "Comparison Of Approximations For Compound Poisson Processes," ASTIN Bulletin, Cambridge University Press, vol. 45(3), pages 601-637, September.
    3. Rob Kaas & Marc Goovaerts & Jan Dhaene & Michel Denuit, 2008. "Modern Actuarial Risk Theory," Springer Books, Springer, edition 2, number 978-3-540-70998-5, April.
    4. J. Baixauli & Susana Alvarez, 2006. "Evaluating effects of excess kurtosis on VaR estimates: Evidence for international stock indices," Review of Quantitative Finance and Accounting, Springer, vol. 27(1), pages 27-46, August.
    5. Pavel V. Shevchenko, 2010. "Calculation of aggregate loss distributions," Papers 1008.1108, arXiv.org.
    6. Rasool Roozegar & Saralees Nadarajah, 2017. "The power series skew normal class of distributions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(22), pages 11404-11423, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    2. Marek Skarupski & Qinhao Wu, 2024. "Confidence bounds for compound Poisson process," Statistical Papers, Springer, vol. 65(8), pages 5351-5377, October.
    3. Alex Huang, 2013. "Value at risk estimation by quantile regression and kernel estimator," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 225-251, August.
    4. Härdle, Wolfgang Karl & Burnecki, Krzysztof & Weron, Rafał, 2004. "Simulation of risk processes," Papers 2004,01, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    5. Kume, Alfred & Hashorva, Enkelejd, 2012. "Calculation of Bayes premium for conditional elliptical risks," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 632-635.
    6. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    7. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2021. "Pricing service maintenance contracts using predictive analytics," European Journal of Operational Research, Elsevier, vol. 290(2), pages 530-545.
    8. Castañer, A. & Claramunt, M.M. & Lefèvre, C., 2013. "Survival probabilities in bivariate risk models, with application to reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 632-642.
    9. Mourdoukoutas, Fotios & Boonen, Tim J. & Koo, Bonsoo & Pantelous, Athanasios A., 2021. "Pricing in a competitive stochastic insurance market," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 44-56.
    10. Antoine Bouveret, 2018. "Cyber Risk for the Financial Sector: A Framework for Quantitative Assessment," IMF Working Papers 2018/143, International Monetary Fund.
    11. Mohamed Amine Lkabous & Jean-François Renaud, 2018. "A VaR-Type Risk Measure Derived from Cumulative Parisian Ruin for the Classical Risk Model," Risks, MDPI, vol. 6(3), pages 1-11, August.
    12. Tang, Qihe & Yang, Fan, 2012. "On the Haezendonck–Goovaerts risk measure for extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 217-227.
    13. Pablo Azcue & Nora Muler, 2013. "Minimizing the ruin probability allowing investments in two assets: a two-dimensional problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(2), pages 177-206, April.
    14. Julien Trufin & Stéphane Loisel, 2013. "Ultimate ruin probability in discrete time with Bühlmann credibility premium adjustments," Post-Print hal-00426790, HAL.
    15. Martin Eling & David Antonius Pankoke, 2016. "Systemic Risk in the Insurance Sector: A Review and Directions for Future Research," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 19(2), pages 249-284, September.
    16. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    17. Eckert, Christian & Gatzert, Nadine, 2017. "Modeling operational risk incorporating reputation risk: An integrated analysis for financial firms," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 122-137.
    18. Denuit, Michel & Robert, Christian Y., 2021. "Polynomial series expansions and moment approximations for conditional mean risk sharing of insurance losses," LIDAM Discussion Papers ISBA 2021016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Cheung, K.C. & Chong, W.F. & Yam, S.C.P., 2015. "Convex ordering for insurance preferences," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 409-416.
    20. Mark Bentley & Alec Stephenson & Peter Toscas & Zili Zhu, 2020. "A Multivariate Model to Quantify and Mitigate Cybersecurity Risk," Risks, MDPI, vol. 8(2), pages 1-21, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1811.06361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.