IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1810.09179.html
   My bibliography  Save this paper

Causal Tree Estimation of Heterogeneous Household Response to Time-Of-Use Electricity Pricing Schemes

Author

Listed:
  • Eoghan O'Neill
  • Melvyn Weeks

Abstract

We examine the household-specific effects of the introduction of Time-of-Use (TOU) electricity pricing schemes. Using a causal forest (Athey and Imbens, 2016; Wager and Athey, 2018; Athey et al., 2019), we consider the association between past consumption and survey variables, and the effect of TOU pricing on household electricity demand. We describe the heterogeneity in household variables across quartiles of estimated demand response and utilise variable importance measures. Household-specific estimates produced by a causal forest exhibit reasonable associations with covariates. For example, households that are younger, more educated, and that consume more electricity, are predicted to respond more to a new pricing scheme. In addition, variable importance measures suggest that some aspects of past consumption information may be more useful than survey information in producing these estimates.

Suggested Citation

  • Eoghan O'Neill & Melvyn Weeks, 2018. "Causal Tree Estimation of Heterogeneous Household Response to Time-Of-Use Electricity Pricing Schemes," Papers 1810.09179, arXiv.org, revised Oct 2019.
  • Handle: RePEc:arx:papers:1810.09179
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1810.09179
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    2. Valeria Di Cosmo & Sean Lyons & Anne Nolan, 2014. "Estimating the Impact of Time-of-Use Pricing on Irish Electricity Demand," The Energy Journal, , vol. 35(2), pages 117-136, April.
    3. Cosmo, Valeria Di & O’Hora, Denis, 2017. "Nudging electricity consumption using TOU pricing and feedback: evidence from Irish households," Journal of Economic Psychology, Elsevier, vol. 61(C), pages 1-14.
    4. Brian C. Prest, 2020. "Peaking Interest: How Awareness Drives the Effectiveness of Time-of-Use Electricity Pricing," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 7(1), pages 103-143.
    5. Jonathan M.V. Davis & Sara B. Heller, 2017. "Rethinking the Benefits of Youth Employment Programs: The Heterogeneous Effects of Summer Jobs," NBER Working Papers 23443, National Bureau of Economic Research, Inc.
    6. Bollinger, Bryan & Hartmann, Wesley R., 2015. "Welfare Effects of Home Automation Technology with Dynamic Pricing," Research Papers 3274, Stanford University, Graduate School of Business.
    7. Matthew Harding & Carlos Lamarche, 2016. "Empowering Consumers Through Data and Smart Technology: Experimental Evidence on the Consequences of Time‐of‐Use Electricity Pricing Policies," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 35(4), pages 906-931, September.
    8. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, October.
    9. Lu Tian & Ash A. Alizadeh & Andrew J. Gentles & Robert Tibshirani, 2014. "A Simple Method for Estimating Interactions Between a Treatment and a Large Number of Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1517-1532, December.
    10. Jonathan M.V. Davis & Sara B. Heller, 2017. "Using Causal Forests to Predict Treatment Heterogeneity: An Application to Summer Jobs," American Economic Review, American Economic Association, vol. 107(5), pages 546-550, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Axenbeck, Janna & Berner, Anne & Kneib, Thomas, 2022. "What drives the relationship between digitalization and industrial energy demand? Exploring firm-level heterogeneity," ZEW Discussion Papers 22-059, ZEW - Leibniz Centre for European Economic Research.
    2. Stephen Jarvis & Olivier Deschenes & Akshaya Jha, 2022. "The Private and External Costs of Germany’s Nuclear Phase-Out," Journal of the European Economic Association, European Economic Association, vol. 20(3), pages 1311-1346.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. O'Neill, E. & Weeks, M., 2018. "Causal Tree Estimation of Heterogeneous Household Response to Time-Of-Use Electricity Pricing Schemes," Cambridge Working Papers in Economics 1865, Faculty of Economics, University of Cambridge.
    2. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    3. Lechner, Michael, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," IZA Discussion Papers 12040, Institute of Labor Economics (IZA).
    4. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    5. Pons Rotger, Gabriel & Rosholm, Michael, 2020. "The Role of Beliefs in Long Sickness Absence: Experimental Evidence from a Psychological Intervention," IZA Discussion Papers 13582, Institute of Labor Economics (IZA).
    6. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
    7. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    8. Diogo G. C. Britto & Paolo Pinotti & Breno Sampaio, 2022. "The Effect of Job Loss and Unemployment Insurance on Crime in Brazil," Econometrica, Econometric Society, vol. 90(4), pages 1393-1423, July.
    9. Phillip Heiler & Michael C. Knaus, 2021. "Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments," Papers 2110.01427, arXiv.org, revised Aug 2023.
    10. Valente, Marica, 2023. "Policy evaluation of waste pricing programs using heterogeneous causal effect estimation," Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
    11. Victor Chernozhukov & Mert Demirer & Esther Duflo & Ivan Fernandez-Val, 2017. "Generic machine learning inference on heterogenous treatment effects in randomized experiments," CeMMAP working papers 61/17, Institute for Fiscal Studies.
    12. Miller, Steve, 2020. "Causal forest estimation of heterogeneous and time-varying environmental policy effects," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    13. Kayo Murakami & Hideki Shimada & Yoshiaki Ushifusa & Takanori Ida, 2022. "Heterogeneous Treatment Effects Of Nudge And Rebate: Causal Machine Learning In A Field Experiment On Electricity Conservation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1779-1803, November.
    14. Joshua B. Gilbert & Zachary Himmelsbach & James Soland & Mridul Joshi & Benjamin W. Domingue, 2024. "Estimating Heterogeneous Treatment Effects with Item-Level Outcome Data: Insights from Item Response Theory," Papers 2405.00161, arXiv.org, revised Aug 2024.
    15. Axenbeck, Janna & Berner, Anne & Kneib, Thomas, 2022. "What drives the relationship between digitalization and industrial energy demand? Exploring firm-level heterogeneity," ZEW Discussion Papers 22-059, ZEW - Leibniz Centre for European Economic Research.
    16. Raaz Dwivedi & Yan Shuo Tan & Briton Park & Mian Wei & Kevin Horgan & David Madigan & Bin Yu, 2020. "Stable Discovery of Interpretable Subgroups via Calibration in Causal Studies," International Statistical Review, International Statistical Institute, vol. 88(S1), pages 135-178, December.
    17. Riccardo Di Francesco, 2022. "Aggregation Trees," CEIS Research Paper 546, Tor Vergata University, CEIS, revised 20 Nov 2023.
    18. Michael Lechner & Jana Mareckova, 2022. "Modified Causal Forest," Papers 2209.03744, arXiv.org.
    19. Lundberg, Ian & Brand, Jennie E. & Jeon, Nanum, 2022. "Researcher reasoning meets computational capacity: Machine learning for social science," SocArXiv s5zc8, Center for Open Science.
    20. Hyung G. Park & Danni Wu & Eva Petkova & Thaddeus Tarpey & R. Todd Ogden, 2023. "Bayesian Index Models for Heterogeneous Treatment Effects on a Binary Outcome," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 397-418, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1810.09179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.