IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1808.07107.html
   My bibliography  Save this paper

Limit order books, diffusion approximations and reflected SPDEs: from microscopic to macroscopic models

Author

Listed:
  • Ben Hambly
  • Jasdeep Kalsi
  • James Newbury

Abstract

Motivated by a zero-intelligence approach, the aim of this paper is to connect the microscopic (discrete price and volume), mesoscopic (discrete price and continuous volume) and macroscopic (continuous price and volume) frameworks for the modelling of limit order books, with a view to providing a natural probabilistic description of their behaviour in a high to ultra high-frequency setting. Starting with a microscopic framework, we first examine the limiting behaviour of the order book process when order arrival and cancellation rates are sent to infinity and when volumes are considered to be of infinitesimal size. We then consider the transition between this mesoscopic model and a macroscopic model for the limit order book, obtained by letting the tick size tend to zero. The macroscopic limit can then be described using reflected SPDEs which typically arise in stochastic interface models. We then use financial data to discuss a possible calibration procedure for the model and illustrate numerically how it can reproduce observed behaviour of prices. This could then be used as a market simulator for short-term price prediction or for testing optimal execution strategies.

Suggested Citation

  • Ben Hambly & Jasdeep Kalsi & James Newbury, 2018. "Limit order books, diffusion approximations and reflected SPDEs: from microscopic to macroscopic models," Papers 1808.07107, arXiv.org, revised Jun 2019.
  • Handle: RePEc:arx:papers:1808.07107
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1808.07107
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rama Cont & Adrien De Larrard, 2011. "Price dynamics in a Markovian limit order market," Papers 1104.4596, arXiv.org.
    2. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    3. Weibing Huang & Charles-Albert Lehalle & Mathieu Rosenbaum, 2015. "Simulating and Analyzing Order Book Data: The Queue-Reactive Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 107-122, March.
    4. Rama Cont & Sasha Stoikov & Rishi Talreja, 2010. "A Stochastic Model for Order Book Dynamics," Operations Research, INFORMS, vol. 58(3), pages 549-563, June.
    5. I. Muni Toke, 2015. "The order book as a queueing system: average depth and influence of the size of limit orders," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 795-808, May.
    6. Jose Blanchet & Xinyun Chen, 2013. "Continuous-time Modeling of Bid-Ask Spread and Price Dynamics in Limit Order Books," Papers 1310.1103, arXiv.org.
    7. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    8. Frédéric Abergel & Aymen Jedidi, 2013. "A Mathematical Approach To Order Book Modeling," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(05), pages 1-40.
    9. Łukasz Kruk, 2003. "Functional Limit Theorems for a Simple Auction," Mathematics of Operations Research, INFORMS, vol. 28(4), pages 716-751, November.
    10. Mendelson, Haim, 1982. "Market Behavior in a Clearing House," Econometrica, Econometric Society, vol. 50(6), pages 1505-1524, November.
    11. Xu, Tiange & Zhang, Tusheng, 2009. "White noise driven SPDEs with reflection: Existence, uniqueness and large deviation principles," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3453-3470, October.
    12. Ioane Muni Toke, 2015. "The order book as a queueing system: average depth and influence of the size of limit orders," Post-Print hal-01006410, HAL.
    13. Ulrich Horst & Michael Paulsen, 2017. "A Law of Large Numbers for Limit Order Books," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1280-1312, November.
    14. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    15. Rama Cont & Adrien De Larrard, 2012. "Order book dynamics in liquid markets: limit theorems and diffusion approximations," Papers 1202.6412, arXiv.org.
    16. Avellaneda, Marco & Reed, Josh & Stoikov, Sasha, 2011. "Forecasting prices from level-I quotes in the presence of hidden liquidity," Algorithmic Finance, IOS Press, vol. 1(1), pages 35-43.
    17. Frederic Abergel & Aymen Jedidi, 2010. "A Mathematical Approach to Order Book Modeling," Papers 1010.5136, arXiv.org, revised Mar 2013.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rama Cont & Marvin S. Mueller, 2019. "A stochastic partial differential equation model for limit order book dynamics," Papers 1904.03058, arXiv.org, revised May 2021.
    2. Rama Cont & Marvin Muller, 2019. "A Stochastic Pde Model For Limit Order Book Dynamics," Working Papers hal-02090449, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan A. Ch'avez-Casillas & Jos'e E. Figueroa-L'opez, 2014. "One-level limit order book models with memory and variable spread," Papers 1407.5684, arXiv.org, revised Mar 2016.
    2. Weibing Huang & Mathieu Rosenbaum & Pamela Saliba, 2019. "From Glosten-Milgrom to the whole limit order book and applications to financial regulation," Papers 1902.10743, arXiv.org.
    3. Clinet, Simon & Yoshida, Nakahiro, 2017. "Statistical inference for ergodic point processes and application to Limit Order Book," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 1800-1839.
    4. Chávez-Casillas, Jonathan A. & Figueroa-López, José E., 2017. "A one-level limit order book model with memory and variable spread," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2447-2481.
    5. Ioane Muni Toke, 2017. "Stationary Distribution Of The Volume At The Best Quote In A Poisson Order Book Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(06), pages 1-22, September.
    6. Rama Cont & Pierre Degond & Xuan Lifan, 2023. "A mathematical framework for modelling order book dynamics," Working Papers hal-03968767, HAL.
    7. Ioane Muni Toke, 2017. "Stationary Distribution Of The Volume At The Best Quote In A Poisson Order Book Model," Post-Print hal-01705085, HAL.
    8. Rama Cont & Pierre Degond & Lifan Xuan, 2023. "A mathematical framework for modelling order book dynamics," Papers 2302.01169, arXiv.org.
    9. Xin Guo & Zhao Ruan & Lingjiong Zhu, 2015. "Dynamics of Order Positions and Related Queues in a Limit Order Book," Papers 1505.04810, arXiv.org, revised Oct 2015.
    10. M. Derksen & B. Kleijn & R. de Vilder, 2019. "Clearing price distributions in call auctions," Papers 1904.07583, arXiv.org, revised Nov 2019.
    11. Ulrich Horst & Michael Paulsen, 2017. "A Law of Large Numbers for Limit Order Books," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1280-1312, November.
    12. Philippe Bergault & Enzo Cogn'eville, 2024. "Simulating and analyzing a sparse order book: an application to intraday electricity markets," Papers 2410.06839, arXiv.org.
    13. Frank Kelly & Elena Yudovina, 2018. "A Markov Model of a Limit Order Book: Thresholds, Recurrence, and Trading Strategies," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 181-203, February.
    14. Mohammad Zare & Omid Naghshineh Arjmand & Erfan Salavati & Adel Mohammadpour, 2021. "An Agent‐Based model for Limit Order Book: Estimation and simulation," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1112-1121, January.
    15. Ulrich Horst & Michael Paulsen, 2015. "A law of large numbers for limit order books," Papers 1501.00843, arXiv.org.
    16. Nicolas Baradel & Bruno Bouchard & David Evangelista & Othmane Mounjid, 2019. "Optimal inventory management and order book modeling," Post-Print hal-01710301, HAL.
    17. Xin Liu & Qi Gong & Vidyadhar G. Kulkarni, 2015. "A Stochastic Model of Order Book Dynamics using Bouncing Geometric Brownian Motions," Papers 1511.04096, arXiv.org, revised Mar 2016.
    18. Ioane Muni Toke & Nakahiro Yoshida, 2017. "Modelling intensities of order flows in a limit order book," Post-Print hal-01705080, HAL.
    19. Kyle Bechler & Michael Ludkovski, 2017. "Order Flows and Limit Order Book Resiliency on the Meso-Scale," Papers 1708.02715, arXiv.org.
    20. Tzu-Wei Yang & Lingjiong Zhu, 2015. "A reduced-form model for level-1 limit order books," Papers 1508.07891, arXiv.org, revised Nov 2016.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1808.07107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.