IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1808.03698.html
   My bibliography  Save this paper

BooST: Boosting Smooth Trees for Partial Effect Estimation in Nonlinear Regressions

Author

Listed:
  • Yuri Fonseca
  • Marcelo Medeiros
  • Gabriel Vasconcelos
  • Alvaro Veiga

Abstract

In this paper, we introduce a new machine learning (ML) model for nonlinear regression called the Boosted Smooth Transition Regression Trees (BooST), which is a combination of boosting algorithms with smooth transition regression trees. The main advantage of the BooST model is the estimation of the derivatives (partial effects) of very general nonlinear models. Therefore, the model can provide more interpretation about the mapping between the covariates and the dependent variable than other tree-based models, such as Random Forests. We present several examples with both simulated and real data.

Suggested Citation

  • Yuri Fonseca & Marcelo Medeiros & Gabriel Vasconcelos & Alvaro Veiga, 2018. "BooST: Boosting Smooth Trees for Partial Effect Estimation in Nonlinear Regressions," Papers 1808.03698, arXiv.org, revised Jul 2020.
  • Handle: RePEc:arx:papers:1808.03698
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1808.03698
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Iván Fernández‐Val & Ye Luo, 2018. "The Sorted Effects Method: Discovering Heterogeneous Effects Beyond Their Averages," Econometrica, Econometric Society, vol. 86(6), pages 1911-1938, November.
    2. John Coglianese & Lucas W. Davis & Lutz Kilian & James H. Stock, 2017. "Anticipation, Tax Avoidance, and the Price Elasticity of Gasoline Demand," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 1-15, January.
    3. Joseph G. Altonji & Hidehiko Ichimura & Taisuke Otsu, 2012. "Estimating Derivatives in Nonseparable Models With Limited Dependent Variables," Econometrica, Econometric Society, vol. 80(4), pages 1701-1719, July.
    4. Liu, Bitao & Müller, Hans-Georg, 2009. "Estimating Derivatives for Samples of Sparsely Observed Functions, With Application to Online Auction Dynamics," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 704-717.
    5. Miguel A. Delgado & Juan Mora, 1998. "Testing non-nested semiparametric models: an application to Engel curves specification," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(2), pages 145-162.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsionas, Mike, 2022. "Efficiency estimation using probabilistic regression trees with an application to Chilean manufacturing industries," International Journal of Production Economics, Elsevier, vol. 249(C).
    2. Joseph G. Altonji & Rosa L. Matzkin, 2001. "Panel Data Estimators for Nonseparable Models with Endogenous Regressors," NBER Technical Working Papers 0267, National Bureau of Economic Research, Inc.
    3. Diego Marino Fages, 2023. "Migration and trust: Evidence on assimilation from internal migrants," Discussion Papers 2023-08, Nottingham Interdisciplinary Centre for Economic and Political Research (NICEP).
    4. Sallin, Aurelién, 2021. "Estimating returns to special education: combining machine learning and text analysis to address confounding," Economics Working Paper Series 2109, University of St. Gallen, School of Economics and Political Science.
    5. M. Adam & O. Bonnet & E. Fize & T. Loisel & M. Rault & L. Wilner, 2023. "How does fuel demand respond to price changes? Quasi-experimental evidence based on high-frequency data," Documents de Travail de l'Insee - INSEE Working Papers 2023-17, Institut National de la Statistique et des Etudes Economiques.
    6. Banzhaf, H. Spencer & Kasim, M. Taha, 2019. "Fuel consumption and gasoline prices: The role of assortative matching between households and automobiles," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 1-25.
    7. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
    8. Caldara, Dario & Cavallo, Michele & Iacoviello, Matteo, 2019. "Oil price elasticities and oil price fluctuations," Journal of Monetary Economics, Elsevier, vol. 103(C), pages 1-20.
    9. Chernozhukov, Victor & Fernández-Val, Iván & Newey, Whitney K., 2019. "Nonseparable multinomial choice models in cross-section and panel data," Journal of Econometrics, Elsevier, vol. 211(1), pages 104-116.
    10. Nida Cakir Melek & Michael Plante & Mine Yucel, 2021. "Resource Booms and the Macroeconomy: The Case of U.S. Shale Oil," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 42, pages 307-332, October.
    11. Luke Taylor & Taisuke Otsu, 2019. "Estimation of nonseparable models with censored dependent variables and endogenous regressors," Econometric Reviews, Taylor & Francis Journals, vol. 38(1), pages 4-24, January.
    12. Yuliya Lovcha & Alejandro Perez-Laborda, 2017. "Structural shocks and dynamic elasticities in a long memory model of the US gasoline retail market," Empirical Economics, Springer, vol. 53(2), pages 405-422, September.
    13. Kazianga, H., 2006. "Motives for household private transfers in Burkina Faso," Journal of Development Economics, Elsevier, vol. 79(1), pages 73-117, February.
    14. Marie-Laure BREUILLÉ & Emmanuelle TAUGOURDEAU, 2019. "Multi-tier tax competition on Gasoline," Working Papers 2019-23, Center for Research in Economics and Statistics.
    15. Lutz Kilian, 2017. "The Impact of the Fracking Boom on Arab Oil Producers," The Energy Journal, , vol. 38(6), pages 137-160, November.
    16. Goetzke, Frank & Vance, Colin, 2018. "Is gasoline price elasticity in the United States increasing? Evidence from the 2009 and 2017 national household travel surveys," Ruhr Economic Papers 765, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    17. Ander Iraizoz & José M Labeaga, 2022. "Incidence and Avoidance Effects of Spatial Fuel Tax Differentials: Evidence using Regional Tax Variation in Spain," Working Papers halshs-03789430, HAL.
    18. Florent Dubois & Christophe Muller, 2020. "The Contribution of Residential Segregation to Racial Income Gaps: Evidence from South Africa," AMSE Working Papers 2029, Aix-Marseille School of Economics, France.
    19. Robert S. Chirinko & Daniel J. Wilson, 2023. "Job Creation Tax Credits, Fiscal Foresight, and Job Growth: Evidence from US States," National Tax Journal, University of Chicago Press, vol. 76(3), pages 481-523.
    20. Ben Lakhdar, Christian & Cauchie, Grégoire & Vaillant, Nicolas Gérard & Wolff, François-Charles, 2012. "The role of family incomes in cigarette smoking: Evidence from French students," Social Science & Medicine, Elsevier, vol. 74(12), pages 1864-1873.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1808.03698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.