IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v18y1984i1p81-98.html
   My bibliography  Save this article

Optimum portfolio diversification in a general continuous-time model

Author

Listed:
  • Aase, Knut Kristian

Abstract

The problem of determining optimal portfolio rules is considered. Prices are allowed to be stochastic processes of a fairly general nature, expressible as stochastic integrals with respect to semimartingales. The set of stochastic differential equations assumed to describe the price behaviour still allows us to handle both the associated control problems and those of statistical inference. The greater generality this approach offers compared to earlier treatments allows for a more realistic fit to real price data. with the obvious implications this has for the applicability of the theory. The additional problem of including consumption is also considered in some generality. The associated Bellman equation has been solved in certain particular situations for illustration. Problems with possible reserve funds, borrowing and shortselling might be handled in the present framework. The problem of statistical inference concerning the parameters in the semimartingale price processes will be treated elsewhere.

Suggested Citation

  • Aase, Knut Kristian, 1984. "Optimum portfolio diversification in a general continuous-time model," Stochastic Processes and their Applications, Elsevier, vol. 18(1), pages 81-98, September.
  • Handle: RePEc:eee:spapps:v:18:y:1984:i:1:p:81-98
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(84)90163-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:18:y:1984:i:1:p:81-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.