IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1701.08789.html
   My bibliography  Save this paper

Understanding food inflation in India: A Machine Learning approach

Author

Listed:
  • Akash Malhotra
  • Mayank Maloo

Abstract

Over the past decade, the stellar growth of Indian economy has been challenged by persistently high levels of inflation, particularly in food prices. The primary reason behind this stubborn food inflation is mismatch in supply-demand, as domestic agricultural production has failed to keep up with rising demand owing to a number of proximate factors. The relative significance of these factors in determining the change in food prices have been analysed using gradient boosted regression trees (BRT), a machine learning technique. The results from BRT indicates all predictor variables to be fairly significant in explaining the change in food prices, with MSP and farm wages being relatively more important than others. International food prices were found to have limited relevance in explaining the variation in domestic food prices. The challenge of ensuring food and nutritional security for growing Indian population with rising incomes needs to be addressed through resolute policy reforms.

Suggested Citation

  • Akash Malhotra & Mayank Maloo, 2017. "Understanding food inflation in India: A Machine Learning approach," Papers 1701.08789, arXiv.org.
  • Handle: RePEc:arx:papers:1701.08789
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1701.08789
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gnutzmann, Hinnerk & Spiewanowski, Piotr, 2016. "Did the Fertilizer Cartel Cause the Food Crisis?," VfS Annual Conference 2016 (Augsburg): Demographic Change 145777, Verein für Socialpolitik / German Economic Association.
    2. Rahul Anand & Ding Ding & Mr. Volodymyr Tulin, 2014. "Food Inflation in India: The Role for Monetary Policy," IMF Working Papers 2014/178, International Monetary Fund.
    3. Vishwakarma, R.K. & Jha, S.N. & Dixit, Anil K. & Amanpreet, Kaur & Rai, Anil & Ahmed, Tauqueer, 2020. "Assessment of harvest and post-harvest losses of major pulses in India," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 32(2), January.
    4. Rahul Anand & Naresh Kumar & Mr. Volodymyr Tulin, 2016. "Understanding India’s Food Inflation: The Role of Demand and Supply Factors," IMF Working Papers 2016/002, International Monetary Fund.
    5. Müller, Daniel & Leitão, Pedro J. & Sikor, Thomas, 2013. "Comparing the determinants of cropland abandonment in Albania and Romania using boosted regression trees," Agricultural Systems, Elsevier, vol. 117(C), pages 66-77.
    6. Kumar, Praduman & Shinoj, P. & Raju, S.S. & Kumar, Anjani & Rich, Karl M. & Msangi, Siwa, 2010. "Factor Demand, Output Supply Elasticities and Supply Projections for Major Crops of India," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 23(01), January.
    7. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    8. Shweta Saini & Marta Kozicka, 2014. "Evolution and Critique of Buffer Stocking Policy of India," Working Papers id:6153, eSocialSciences.
    9. Thangzason Sonna & Himanshu Joshi & Alice Sebastin & Upasana Sharma, 2014. "Analytics of Food Inflation in India," Working Papers id:6174, eSocialSciences.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emmanuel O. Akande & Elijah O. Akanni & Oyedamola F. Taiwo & Jeremiah D. Joshua & Abel Anthony, 2023. "Predicting inflation component drivers in Nigeria: a stacked ensemble approach," SN Business & Economics, Springer, vol. 3(1), pages 1-32, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    2. Akash Malhotra, 2021. "A hybrid econometric–machine learning approach for relative importance analysis: prioritizing food policy," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 549-581, September.
    3. Rahul Anand & Naresh Kumar & Mr. Volodymyr Tulin, 2016. "Understanding India’s Food Inflation: The Role of Demand and Supply Factors," IMF Working Papers 2016/002, International Monetary Fund.
    4. Holtemöller, Oliver & Mallick, Sushanta, 2016. "Global food prices and monetary policy in an emerging market economy: The case of India," Journal of Asian Economics, Elsevier, vol. 46(C), pages 56-70.
    5. Ginn, William & Pourroy, Marc, 2022. "The contribution of food subsidy policy to monetary policy in India," Economic Modelling, Elsevier, vol. 113(C).
    6. Sajjid Chinoy & Pankaj Kumar & Ms. Prachi Mishra, 2016. "What is Responsible for India’s Sharp Disinflation?," IMF Working Papers 2016/166, International Monetary Fund.
    7. Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
    8. Castro, P. & Pedroso, R. & Lautenbach, S. & Vicens, R., 2020. "Farmland abandonment in Rio de Janeiro: Underlying and contributory causes of an announced development," Land Use Policy, Elsevier, vol. 95(C).
    9. Thibault Fally & James Sayre, 2018. "Commodity Trade Matters," 2018 Meeting Papers 172, Society for Economic Dynamics.
    10. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    11. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    12. Tim Voigt & Martin Kohlhase & Oliver Nelles, 2021. "Incremental DoE and Modeling Methodology with Gaussian Process Regression: An Industrially Applicable Approach to Incorporate Expert Knowledge," Mathematics, MDPI, vol. 9(19), pages 1-26, October.
    13. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    14. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    15. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    16. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    17. Smyl, Slawek & Hua, N. Grace, 2019. "Machine learning methods for GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1424-1431.
    18. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    19. Brockhaus, Jan & Kalkuhl, Matthias & Kozicka, Marta, 2016. "What Drives India’s Rice Stocks? Empirical Evidence," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235659, Agricultural and Applied Economics Association.
    20. Eike Emrich & Christian Pierdzioch, 2016. "Volunteering, Match Quality, and Internet Use," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 136(2), pages 199-226.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1701.08789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.