IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1804.04870.html
   My bibliography  Save this paper

An Optimal Dividend Problem with Capital Injections over a Finite Horizon

Author

Listed:
  • Giorgio Ferrari
  • Patrick Schuhmann

Abstract

In this paper we propose and solve an optimal dividend problem with capital injections over a finite time horizon. The surplus dynamics obeys a linearly controlled drifted Brownian motion that is reflected at the origin, dividends give rise to time-dependent instantaneous marginal profits, whereas capital injections are subject to time-dependent instantaneous marginal costs. The aim is to maximize the sum of a liquidation value at terminal time and of the total expected profits from dividends, net of the total expected costs for capital injections. Inspired by the study of El Karoui and Karatzas (1989) on reflected follower problems, we relate the optimal dividend problem with capital injections to an optimal stopping problem for a drifted Brownian motion that is absorbed at the origin. We show that whenever the optimal stopping rule is triggered by a time-dependent boundary, the value function of the optimal stopping problem gives the derivative of the value function of the optimal dividend problem. Moreover, the optimal dividend strategy is also triggered by the moving boundary of the associated stopping problem. The properties of this boundary are then investigated in a case study in which instantaneous marginal profits and costs from dividends and capital injections are constants discounted at a constant rate.

Suggested Citation

  • Giorgio Ferrari & Patrick Schuhmann, 2018. "An Optimal Dividend Problem with Capital Injections over a Finite Horizon," Papers 1804.04870, arXiv.org, revised May 2019.
  • Handle: RePEc:arx:papers:1804.04870
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1804.04870
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benjamin Avanzi, 2009. "Strategies for Dividend Distribution: A Review," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(2), pages 217-251.
    2. Akyildirim, Erdinç & Güney, I. Ethem & Rochet, Jean-Charles & Soner, H. Mete, 2014. "Optimal dividend policy with random interest rates," Journal of Mathematical Economics, Elsevier, vol. 51(C), pages 93-101.
    3. Ioannis Karatzas & Fridrik M. Baldursson, 1996. "Irreversible investment and industry equilibrium (*)," Finance and Stochastics, Springer, vol. 1(1), pages 69-89.
    4. Dickson, David C.M. & Waters, Howard R., 2004. "Some Optimal Dividends Problems," ASTIN Bulletin, Cambridge University Press, vol. 34(1), pages 49-74, May.
    5. Løkka, Arne & Zervos, Mihail, 2008. "Optimal dividend and issuance of equity policies in the presence of proportional costs," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 954-961, June.
    6. Zhengjun Jiang & Martijn Pistorius, 2012. "Optimal dividend distribution under Markov regime switching," Finance and Stochastics, Springer, vol. 16(3), pages 449-476, July.
    7. Kulenko, Natalie & Schmidli, Hanspeter, 2008. "Optimal dividend strategies in a Cramér-Lundberg model with capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 270-278, October.
    8. Zhu, Jinxia & Yang, Hailiang, 2016. "Optimal capital injection and dividend distribution for growth restricted diffusion models with bankruptcy," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 259-271.
    9. Tiziano De Angelis & Erik Ekstrom, 2016. "The dividend problem with a finite horizon," Papers 1609.01655, arXiv.org, revised Nov 2017.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiziano De Angelis, 2018. "Optimal dividends with partial information and stopping of a degenerate reflecting diffusion," Papers 1805.12035, arXiv.org, revised Mar 2019.
    2. Tiziano Angelis, 2020. "Optimal dividends with partial information and stopping of a degenerate reflecting diffusion," Finance and Stochastics, Springer, vol. 24(1), pages 71-123, January.
    3. Elena Bandini & Tiziano De Angelis & Giorgio Ferrari & Fausto Gozzi, 2022. "Optimal dividend payout under stochastic discounting," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 627-677, April.
    4. Soren Christensen & Kristoffer Lindensjo, 2019. "Moment constrained optimal dividends: precommitment \& consistent planning," Papers 1909.10749, arXiv.org.
    5. Federico, Salvatore & Ferrari, Giorgio & Torrente, Maria Laura, 2023. "Irreversible Reinsurance: Minimization of Capital Injections in Presence of a Fixed Cost," Center for Mathematical Economics Working Papers 682, Center for Mathematical Economics, Bielefeld University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferrari, Giorgio & Schuhmann, Patrick, 2018. "An Optimal Dividend Problem with Capital Injections over a Finite Horizon," Center for Mathematical Economics Working Papers 595, Center for Mathematical Economics, Bielefeld University.
    2. Ernst, Philip A. & Imerman, Michael B. & Shepp, Larry & Zhou, Quan, 2022. "Fiscal stimulus as an optimal control problem," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 1091-1108.
    3. Elena Bandini & Tiziano De Angelis & Giorgio Ferrari & Fausto Gozzi, 2022. "Optimal dividend payout under stochastic discounting," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 627-677, April.
    4. Kristoffer Lindensjö & Filip Lindskog, 2020. "Optimal dividends and capital injection under dividend restrictions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(3), pages 461-487, December.
    5. Tiziano De Angelis, 2018. "Optimal dividends with partial information and stopping of a degenerate reflecting diffusion," Papers 1805.12035, arXiv.org, revised Mar 2019.
    6. Kristoffer Lindensjo & Filip Lindskog, 2019. "Optimal dividends and capital injection under dividend restrictions," Papers 1902.06294, arXiv.org.
    7. Tiziano Angelis, 2020. "Optimal dividends with partial information and stopping of a degenerate reflecting diffusion," Finance and Stochastics, Springer, vol. 24(1), pages 71-123, January.
    8. Giorgio Ferrari & Patrick Schuhmann & Shihao Zhu, 2021. "Optimal Dividends under Markov-Modulated Bankruptcy Level," Papers 2111.03724, arXiv.org, revised Jun 2022.
    9. Ferrari, Giorgio & Schuhmann, Patrick & Zhu, Shihao, 2021. "Optimal Dividends under Markov-Modulated Bankruptcy Level," Center for Mathematical Economics Working Papers 657, Center for Mathematical Economics, Bielefeld University.
    10. Julia Eisenberg & Stefan Kremsner & Alexander Steinicke, 2021. "Two Approaches for a Dividend Maximization Problem under an Ornstein-Uhlenbeck Interest Rate," Papers 2108.00234, arXiv.org.
    11. Andrea Barth & Santiago Moreno–Bromberg & Oleg Reichmann, 2016. "A Non-stationary Model of Dividend Distribution in a Stochastic Interest-Rate Setting," Computational Economics, Springer;Society for Computational Economics, vol. 47(3), pages 447-472, March.
    12. Eisenberg, Julia & Krühner, Paul, 2018. "The impact of negative interest rates on optimal capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 1-10.
    13. Ferrari, Giorgio, 2018. "On a Class of Singular Stochastic Control Problems for Reflected Diffusions," Center for Mathematical Economics Working Papers 592, Center for Mathematical Economics, Bielefeld University.
    14. Ferrari, Giorgio & Schuhmann, Patrick & Zhu, Shihao, 2022. "Optimal dividends under Markov-modulated bankruptcy level," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 146-172.
    15. Julia Eisenberg & Stefan Kremsner & Alexander Steinicke, 2021. "Two Approaches for a Dividend Maximization Problem under an Ornstein-Uhlenbeck Interest Rate," Mathematics, MDPI, vol. 9(18), pages 1-20, September.
    16. Jinxia Zhu & Hailiang Yang, 2015. "Optimal financing and dividend distribution in a general diffusion model with regime switching," Papers 1506.08360, arXiv.org.
    17. Loeffen, Ronnie L. & Renaud, Jean-François, 2010. "De Finetti's optimal dividends problem with an affine penalty function at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 98-108, February.
    18. Liang, Zhibin & Young, Virginia R., 2012. "Dividends and reinsurance under a penalty for ruin," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 437-445.
    19. Gajek, Lesław & Kuciński, Łukasz, 2017. "Complete discounted cash flow valuation," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 1-19.
    20. Xu, Ran & Woo, Jae-Kyung, 2020. "Optimal dividend and capital injection strategy with a penalty payment at ruin: Restricted dividend payments," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 1-16.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1804.04870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.