IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1805.12035.html
   My bibliography  Save this paper

Optimal dividends with partial information and stopping of a degenerate reflecting diffusion

Author

Listed:
  • Tiziano De Angelis

Abstract

We study the optimal dividend problem for a firm's manager who has partial information on the profitability of the firm. The problem is formulated as one of singular stochastic control with partial information on the drift of the underlying process and with absorption. In the Markovian formulation, we have a 2-dimensional degenerate diffusion, whose first component is singularly controlled and it is absorbed as it hits zero. The free boundary problem (FBP) associated to the value function of the control problem is challenging from the analytical point of view due to the interplay of degeneracy and absorption. We find a probabilistic way to show that the value function of the dividend problem is a smooth solution of the FBP and to construct an optimal dividend strategy. Our approach establishes a new link between multidimensional singular stochastic control problems with absorption and problems of optimal stopping with `creation'. One key feature of the stopping problem is that creation occurs at a state-dependent rate of the `local-time' of an auxiliary 2-dimensional reflecting diffusion.

Suggested Citation

  • Tiziano De Angelis, 2018. "Optimal dividends with partial information and stopping of a degenerate reflecting diffusion," Papers 1805.12035, arXiv.org, revised Mar 2019.
  • Handle: RePEc:arx:papers:1805.12035
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1805.12035
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tiziano De Angelis & Fabien Gensbittel & St'ephane Villeneuve, 2017. "A Dynkin game on assets with incomplete information on the return," Papers 1705.07352, arXiv.org, revised May 2019.
    2. M. I. Taksar, 1985. "Average Optimal Singular Control and a Related Stopping Problem," Mathematics of Operations Research, INFORMS, vol. 10(1), pages 63-81, February.
    3. de Angelis, Tiziano & Federico, Salvatore & Ferrari, Giorgio, 2016. "On the Optimal Boundary of a Three-Dimensional Singular Stochastic Control Problem Arising in Irreversible Investment," Center for Mathematical Economics Working Papers 509, Center for Mathematical Economics, Bielefeld University.
    4. Boetius, Frederik & Kohlmann, Michael, 1998. "Connections between optimal stopping and singular stochastic control," Stochastic Processes and their Applications, Elsevier, vol. 77(2), pages 253-281, September.
    5. Eisenberg, Julia, 2015. "Optimal dividends under a stochastic interest rate," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 259-266.
    6. Benjamin Avanzi, 2009. "Strategies for Dividend Distribution: A Review," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(2), pages 217-251.
    7. Akyildirim, Erdinç & Güney, I. Ethem & Rochet, Jean-Charles & Soner, H. Mete, 2014. "Optimal dividend policy with random interest rates," Journal of Mathematical Economics, Elsevier, vol. 51(C), pages 93-101.
    8. Chiarolla, Maria B. & De Angelis, Tiziano, 2015. "Analytical pricing of American Put options on a Zero Coupon Bond in the Heath–Jarrow–Morton model," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 678-707.
    9. Bayraktar, Erhan & Kyprianou, Andreas E. & Yamazaki, Kazutoshi, 2013. "On Optimal Dividends In The Dual Model," ASTIN Bulletin, Cambridge University Press, vol. 43(3), pages 359-372, September.
    10. Manuel Klein, 2009. "Comment on “Investment Timing Under Incomplete Information”," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 249-254, February.
    11. Radner, Roy & Shepp, Larry, 1996. "Risk vs. profit potential: A model for corporate strategy," Journal of Economic Dynamics and Control, Elsevier, vol. 20(8), pages 1373-1393, August.
    12. Zhengjun Jiang & Martijn Pistorius, 2012. "Optimal dividend distribution under Markov regime switching," Finance and Stochastics, Springer, vol. 16(3), pages 449-476, July.
    13. Ferrari, Giorgio & Schuhmann, Patrick, 2018. "An Optimal Dividend Problem with Capital Injections over a Finite Horizon," Center for Mathematical Economics Working Papers 595, Center for Mathematical Economics, Bielefeld University.
    14. Giorgio Ferrari & Patrick Schuhmann, 2018. "An Optimal Dividend Problem with Capital Injections over a Finite Horizon," Papers 1804.04870, arXiv.org, revised May 2019.
    15. Tiziano De Angelis & Erik Ekstrom, 2016. "The dividend problem with a finite horizon," Papers 1609.01655, arXiv.org, revised Nov 2017.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giorgia Callegaro & Claudia Ceci & Giorgio Ferrari, 2019. "Optimal Reduction of Public Debt under Partial Observation of the Economic Growth," Papers 1901.08356, arXiv.org, revised Jan 2019.
    2. Callegaro, Giorgia & Ceci, Claudia & Ferrari, Giorgio, 2019. "Optimal Reduction of Public Debt under Partial Observation of the Economic Growth," Center for Mathematical Economics Working Papers 608, Center for Mathematical Economics, Bielefeld University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiziano Angelis, 2020. "Optimal dividends with partial information and stopping of a degenerate reflecting diffusion," Finance and Stochastics, Springer, vol. 24(1), pages 71-123, January.
    2. Elena Bandini & Tiziano De Angelis & Giorgio Ferrari & Fausto Gozzi, 2022. "Optimal dividend payout under stochastic discounting," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 627-677, April.
    3. Julia Eisenberg & Stefan Kremsner & Alexander Steinicke, 2021. "Two Approaches for a Dividend Maximization Problem under an Ornstein-Uhlenbeck Interest Rate," Papers 2108.00234, arXiv.org.
    4. Giorgio Ferrari & Patrick Schuhmann, 2018. "An Optimal Dividend Problem with Capital Injections over a Finite Horizon," Papers 1804.04870, arXiv.org, revised May 2019.
    5. Julia Eisenberg & Stefan Kremsner & Alexander Steinicke, 2021. "Two Approaches for a Dividend Maximization Problem under an Ornstein-Uhlenbeck Interest Rate," Mathematics, MDPI, vol. 9(18), pages 1-20, September.
    6. Tiziano De Angelis & Erik Ekstrom, 2016. "The dividend problem with a finite horizon," Papers 1609.01655, arXiv.org, revised Nov 2017.
    7. Ferrari, Giorgio & Schuhmann, Patrick, 2018. "An Optimal Dividend Problem with Capital Injections over a Finite Horizon," Center for Mathematical Economics Working Papers 595, Center for Mathematical Economics, Bielefeld University.
    8. Szölgyenyi Michaela, 2015. "Dividend maximization in a hidden Markov switching model," Statistics & Risk Modeling, De Gruyter, vol. 32(3-4), pages 143-158, December.
    9. A. Max Reppen & Jean‐Charles Rochet & H. Mete Soner, 2020. "Optimal dividend policies with random profitability," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 228-259, January.
    10. Andrea Barth & Santiago Moreno–Bromberg & Oleg Reichmann, 2016. "A Non-stationary Model of Dividend Distribution in a Stochastic Interest-Rate Setting," Computational Economics, Springer;Society for Computational Economics, vol. 47(3), pages 447-472, March.
    11. Ernst, Philip A. & Imerman, Michael B. & Shepp, Larry & Zhou, Quan, 2022. "Fiscal stimulus as an optimal control problem," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 1091-1108.
    12. Gunther Leobacher & Michaela Szolgyenyi & Stefan Thonhauser, 2016. "Bayesian Dividend Optimization and Finite Time Ruin Probabilities," Papers 1602.04660, arXiv.org.
    13. Julia Eisenberg & Zbigniew Palmowski, 2020. "Optimal Dividends Paid in a Foreign Currency for a L\'evy Insurance Risk Model," Papers 2001.03733, arXiv.org.
    14. Stefan Kremsner & Alexander Steinicke & Michaela Szölgyenyi, 2020. "A Deep Neural Network Algorithm for Semilinear Elliptic PDEs with Applications in Insurance Mathematics," Risks, MDPI, vol. 8(4), pages 1-18, December.
    15. Ferrari, Giorgio & Schuhmann, Patrick & Zhu, Shihao, 2022. "Optimal dividends under Markov-modulated bankruptcy level," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 146-172.
    16. Stefan Kremsner & Alexander Steinicke & Michaela Szolgyenyi, 2020. "A deep neural network algorithm for semilinear elliptic PDEs with applications in insurance mathematics," Papers 2010.15757, arXiv.org, revised Dec 2020.
    17. Michaela Szolgyenyi, 2016. "Dividend maximization in a hidden Markov switching model," Papers 1602.04656, arXiv.org.
    18. Giorgio Ferrari & Patrick Schuhmann & Shihao Zhu, 2021. "Optimal Dividends under Markov-Modulated Bankruptcy Level," Papers 2111.03724, arXiv.org, revised Jun 2022.
    19. Ferrari, Giorgio & Schuhmann, Patrick & Zhu, Shihao, 2021. "Optimal Dividends under Markov-Modulated Bankruptcy Level," Center for Mathematical Economics Working Papers 657, Center for Mathematical Economics, Bielefeld University.
    20. Chen, Shumin & Wang, Xi & Deng, Yinglu & Zeng, Yan, 2016. "Optimal dividend-financing strategies in a dual risk model with time-inconsistent preferences," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 27-37.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1805.12035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.