IDEAS home Printed from https://ideas.repec.org/b/uts/finphd/1-2001.html
   My bibliography  Save this book

Bankruptcy Probability: A Theoretical and Empirical Examination

Author

Listed:
  • Maurice Peat

Abstract

Early Bankruptcy classification models were developed to demonstrate the usefulness of information contained in financial statements. The majority of classification models developed have used a pool of financial ratios combined with statistical variable selection techniques to maximise the accuracy of the classifier being employed. Rather than follow an "ad hoc" variable selection process, this thesis seeks to provide an economic bl!sis for the selection of variables for inclusion in bankruptcy models, which are based on accounting information. An implicit assumption underlying this work is that the probability of default is endogenous. That is, the decisions of a firm's management have a direct impact on the probability of bankruptcy. These decisions and th~ir resultant effects can be identified through analysis of financial statements. A model of a firm facing an uncertain environment with the possibility of bankruptcy is developed and analysed. In the model, a firm is created with given initial equity. These funds can be invested in productive resources or held as cash balances. The productive resources are used to earn random earnings in any period. If earnings are positive, they can be used to pay dividends to shareholders, invest in new productive resources, repay outstanding debt or increase the firm's cash balance. The firm is able to borrow and repay funds up to a credit limit. When the cash position of the firm falls to zero the firm is bankrupt. The firm attempts to maximise the stream of dividends paid to shareholders during its life. The solutions of the model and the associated bankruptcy probability expressions are derived by application of the dynamic programming algorithm.

Suggested Citation

  • Maurice Peat, 2001. "Bankruptcy Probability: A Theoretical and Empirical Examination," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2001, January-A.
  • Handle: RePEc:uts:finphd:1-2001
    as

    Download full text from publisher

    File URL: https://opus.lib.uts.edu.au/bitstream/10453/32320/2/02whole.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lennox, Clive, 1999. "Identifying failing companies: a re-evaluation of the logit, probit and DA approaches," Journal of Economics and Business, Elsevier, vol. 51(4), pages 347-364, July.
    2. Yang, Z. R. & Platt, Marjorie B. & Platt, Harlan D., 1999. "Probabilistic Neural Networks in Bankruptcy Prediction," Journal of Business Research, Elsevier, vol. 44(2), pages 67-74, February.
    3. Geske, Robert, 1979. "The valuation of compound options," Journal of Financial Economics, Elsevier, vol. 7(1), pages 63-81, March.
    4. Lo, Andrew W., 1988. "Maximum Likelihood Estimation of Generalized Itô Processes with Discretely Sampled Data," Econometric Theory, Cambridge University Press, vol. 4(2), pages 231-247, August.
    5. Robert A. Jarrow & Stuart M. Turnbull, 2008. "Pricing Derivatives on Financial Securities Subject to Credit Risk," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 17, pages 377-409, World Scientific Publishing Co. Pte. Ltd..
    6. Chen, Chung & Wu, Chunchi, 1999. "The dynamics of dividends, earnings and prices: evidence and implications for dividend smoothing and signaling," Journal of Empirical Finance, Elsevier, vol. 6(1), pages 29-58, January.
    7. Leland, Hayne E & Toft, Klaus Bjerre, 1996. "Optimal Capital Structure, Endogenous Bankruptcy, and the Term Structure of Credit Spreads," Journal of Finance, American Finance Association, vol. 51(3), pages 987-1019, July.
    8. Longstaff, Francis A & Schwartz, Eduardo S, 1995. "A Simple Approach to Valuing Risky Fixed and Floating Rate Debt," Journal of Finance, American Finance Association, vol. 50(3), pages 789-819, July.
    9. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    10. Joy, O. Maurice & Tollefson, John O., 1975. "On the Financial Applications of Discriminant Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 10(5), pages 723-739, December.
    11. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    12. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    13. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    14. Wilcox, Jw, 1971. "Simple Theory Of Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 9(2), pages 389-345.
    15. Schipper, K, 1977. "Financial Distress In Private Colleges," Journal of Accounting Research, Wiley Blackwell, vol. 15, pages 1-53.
    16. Stevens, Donald L., 1973. "Financial Characteristics of Merged Firms: A Multivariate Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 8(2), pages 149-158, March.
    17. Gregory-Allen, Russell B & Henderson, Glenn V, Jr, 1991. "A Brief Review of Catastrophe Theory and a Test in a Corporate Failure Context," The Financial Review, Eastern Finance Association, vol. 26(2), pages 127-155, May.
    18. Armen A. Alchian, 1950. "Uncertainty, Evolution, and Economic Theory," Journal of Political Economy, University of Chicago Press, vol. 58(3), pages 211-211.
    19. Blum, M, 1974. "Failing Company Discriminant-Analysis," Journal of Accounting Research, Wiley Blackwell, vol. 12(1), pages 1-25.
    20. Laitinen, Erkki K. & Laitinen, Teija, 2000. "Bankruptcy prediction: Application of the Taylor's expansion in logistic regression," International Review of Financial Analysis, Elsevier, vol. 9(4), pages 327-349.
    21. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    22. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    23. Mossman, Charles E, et al, 1998. "An Empirical Comparison of Bankruptcy Models," The Financial Review, Eastern Finance Association, vol. 33(2), pages 35-53, May.
    24. Pinches, George E & Mingo, Kent A & Caruthers, J Kent, 1973. "The Stability of Financial Patterns in Industrial Organizations," Journal of Finance, American Finance Association, vol. 28(2), pages 389-396, May.
    25. Scott, James H, Jr, 1977. "Bankruptcy, Secured Debt, and Optimal Capital Structure," Journal of Finance, American Finance Association, vol. 32(1), pages 1-19, March.
    26. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    27. Libby, R, 1975. "Accounting Ratios And Prediction Of Failure - Some Behavioral Evidence," Journal of Accounting Research, Wiley Blackwell, vol. 13(1), pages 150-161.
    28. Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. "Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maurice Peat, 2001. "Bankruptcy Probability: A Theoretical and Empirical Examination," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 20, July-Dece.
    2. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    3. Bhanu Pratap Singh & Alok Kumar Mishra, 2016. "Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-28, December.
    4. Catherine Refait, 2000. "Estimation du risque de défaut par une modélisation stochastique du bilan : Application à des firmes industrielles françaises," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-03718527, HAL.
    5. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    6. Jackson, Richard H.G. & Wood, Anthony, 2013. "The performance of insolvency prediction and credit risk models in the UK: A comparative study," The British Accounting Review, Elsevier, vol. 45(3), pages 183-202.
    7. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    8. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    9. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    10. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    11. du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.
    12. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    13. Zhou Lu & Zhuyao Zhuo, 2021. "Modelling of Chinese corporate bond default – A machine learning approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(5), pages 6147-6191, December.
    14. Philippe Jardin & David Veganzones & Eric Séverin, 2019. "Forecasting Corporate Bankruptcy Using Accrual-Based Models," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 7-43, June.
    15. Kerstin Lopatta & Mario Albert Gloger & Reemda Jaeschke, 2017. "Can Language Predict Bankruptcy? The Explanatory Power of Tone in 10‐K Filings," Accounting Perspectives, John Wiley & Sons, vol. 16(4), pages 315-343, December.
    16. Şaban Çelik & Bora Aktan & Bruce Burton, 2022. "Firm dynamics and bankruptcy processes: A new theoretical model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 567-591, April.
    17. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
    18. Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
    19. Tsung-Kang Chen & Hsien-Hsing Liao & Chia-Wu Lu, 2011. "A flow-based corporate credit model," Review of Quantitative Finance and Accounting, Springer, vol. 36(4), pages 517-532, May.
    20. Laitinen, Erkki K., 2007. "Classification accuracy and correlation: LDA in failure prediction," European Journal of Operational Research, Elsevier, vol. 183(1), pages 210-225, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:finphd:1-2001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/sfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.