IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1712.09201.html
   My bibliography  Save this paper

Approximation methods for piecewise deterministic Markov processes and their costs

Author

Listed:
  • Peter Kritzer
  • Gunther Leobacher
  • Michaela Szolgyenyi
  • Stefan Thonhauser

Abstract

In this paper, we analyse piecewise deterministic Markov processes, as introduced in Davis (1984). Many models in insurance mathematics can be formulated in terms of the general concept of piecewise deterministic Markov processes. In this context, one is interested in computing certain quantities of interest such as the probability of ruin of an insurance company, or the insurance company's value, defined as the expected discounted future dividend payments until the time of ruin. Instead of explicitly solving the integro-(partial) differential equation related to the quantity of interest considered (an approach which can only be used in few special cases), we adapt the problem in a manner that allows us to apply deterministic numerical integration algorithms such as quasi-Monte Carlo rules; this is in contrast to applying random integration algorithms such as Monte Carlo. To this end, we reformulate a general cost functional as a fixed point of a particular integral operator, which allows for iterative approximation of the functional. Furthermore, we introduce a smoothing technique which is applied to the integrands involved, in order to use error bounds for deterministic cubature rules. On the analytical side, we prove a convergence result for our PDMP approximation, which is of independent interest as it justifies phase-type approximations on the process level. We illustrate the smoothing technique for a risk-theoretic example, and provide a comparative study of deterministic and Monte Carlo integration.

Suggested Citation

  • Peter Kritzer & Gunther Leobacher & Michaela Szolgyenyi & Stefan Thonhauser, 2017. "Approximation methods for piecewise deterministic Markov processes and their costs," Papers 1712.09201, arXiv.org, revised Jan 2019.
  • Handle: RePEc:arx:papers:1712.09201
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1712.09201
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andreas Eichler & Gunther Leobacher & Michaela Szolgyenyi, 2016. "Utility Indifference Pricing of Insurance Catastrophe Derivatives," Papers 1607.01110, arXiv.org, revised May 2017.
    2. Katia Colaneri & Zehra Eksi & Rudiger Frey & Michaela Szolgyenyi, 2016. "Optimal Liquidation under Partial Information with Price Impact," Papers 1606.05079, arXiv.org, revised Jun 2019.
    3. Siegl, Thomas & F. Tichy, Robert, 2000. "Ruin theory with risk proportional to the free reserve and securitization," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 59-73, February.
    4. B de Saporta & F Dufour & H Zhang & C Elegbede, 2012. "Optimal stopping for the predictive maintenance of a structure subject to corrosion," Journal of Risk and Reliability, , vol. 226(2), pages 169-181, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon Pojer & Stefan Thonhauser, 2023. "The Markovian Shot-noise Risk Model: A Numerical Method for Gerber-Shiu Functions," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-26, March.
    2. Stefan Kremsner & Alexander Steinicke & Michaela Szölgyenyi, 2020. "A Deep Neural Network Algorithm for Semilinear Elliptic PDEs with Applications in Insurance Mathematics," Risks, MDPI, vol. 8(4), pages 1-18, December.
    3. Josef Anton Strini & Stefan Thonhauser, 2020. "On Computations in Renewal Risk Models—Analytical and Statistical Aspects," Risks, MDPI, vol. 8(1), pages 1-20, March.
    4. Stefan Kremsner & Alexander Steinicke & Michaela Szolgyenyi, 2020. "A deep neural network algorithm for semilinear elliptic PDEs with applications in insurance mathematics," Papers 2010.15757, arXiv.org, revised Dec 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hubalek, Friedrich & Schachermayer, Walter, 2004. "Optimizing expected utility of dividend payments for a Brownian risk process and a peculiar nonlinear ODE," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 193-225, April.
    2. Qing-Qing Yang & Wai-Ki Ching & Jiawen Gu & Tak-Kuen Siu, 2020. "Trading strategy with stochastic volatility in a limit order book market," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 277-301, June.
    3. Alessandra Cretarola & Benedetta Salterini, 2023. "Utility-based indifference pricing of pure endowments in a Markov-modulated market model," Papers 2301.13575, arXiv.org.
    4. de Saporta, Benoîte & Zhang, Huilong, 2013. "Predictive maintenance for the heated hold-up tank," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 82-90.
    5. Leung, Melvern & Fung, Man Chung & O’Hare, Colin, 2018. "A comparative study of pricing approaches for longevity instruments," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 95-116.
    6. Liu, Haibo & Tang, Qihe & Yuan, Zhongyi, 2021. "Indifference pricing of insurance-linked securities in a multi-period model," European Journal of Operational Research, Elsevier, vol. 289(2), pages 793-805.
    7. David Evangelista & Yuri Thamsten, 2020. "On finite population games of optimal trading," Papers 2004.00790, arXiv.org, revised Feb 2021.
    8. Claudia Ceci & Katia Colaneri & Alessandra Cretarola, 2018. "Indifference pricing of pure endowments via BSDEs under partial information," Papers 1804.00223, arXiv.org, revised Jul 2020.
    9. Coulibaly, Ibrahim & Lefèvre, Claude, 2008. "On a simple quasi-Monte Carlo approach for classical ultimate ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 935-942, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1712.09201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.