IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1707.04293.html
   My bibliography  Save this paper

A short introduction to quasi-Monte Carlo option pricing

Author

Listed:
  • Gunther Leobacher

Abstract

One of the main practical applications of quasi-Monte Carlo (QMC) methods is the valuation of financial derivatives. We aim to give a short introduction into option pricing and show how it is facilitated using QMC. We give some practical examples for illustration.

Suggested Citation

  • Gunther Leobacher, 2017. "A short introduction to quasi-Monte Carlo option pricing," Papers 1707.04293, arXiv.org, revised Jul 2017.
  • Handle: RePEc:arx:papers:1707.04293
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1707.04293
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    2. Athanassios N. Avramidis & Pierre L'Ecuyer, 2006. "Efficient Monte Carlo and Quasi-Monte Carlo Option Pricing Under the Variance Gamma Model," Management Science, INFORMS, vol. 52(12), pages 1930-1944, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Genin, Adrien & Tankov, Peter, 2020. "Optimal importance sampling for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 20-46.
    2. Adrien Genin & Peter Tankov, 2016. "Optimal importance sampling for L\'evy Processes," Papers 1608.04621, arXiv.org.
    3. Jorge González Cázares & Aleksandar Mijatović, 2022. "Simulation of the drawdown and its duration in Lévy models via stick-breaking Gaussian approximation," Finance and Stochastics, Springer, vol. 26(4), pages 671-732, October.
    4. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    5. Zhengqing Zhou & Guanyang Wang & Jose Blanchet & Peter W. Glynn, 2021. "Unbiased Optimal Stopping via the MUSE," Papers 2106.02263, arXiv.org, revised Dec 2022.
    6. Yi Chen & Jing Dong & Hao Ni, 2021. "ɛ-Strong Simulation of Fractional Brownian Motion and Related Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 559-594, May.
    7. Ruzayqat Hamza M. & Jasra Ajay, 2020. "Unbiased estimation of the solution to Zakai’s equation," Monte Carlo Methods and Applications, De Gruyter, vol. 26(2), pages 113-129, June.
    8. Hatem Ben‐Ameur & Rim Chérif & Bruno Rémillard, 2020. "Dynamic programming for valuing American options under a variance‐gamma process," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(10), pages 1548-1561, October.
    9. Jian Wang & Xiang Gao & Zhili Sun, 2021. "A Multilevel Simulation Method for Time-Variant Reliability Analysis," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    10. Ahmed Kebaier & J'er^ome Lelong, 2015. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Papers 1510.03590, arXiv.org, revised Jul 2017.
    11. Stéphane Crépey & Noufel Frikha & Azar Louzi & Gilles Pagès, 2023. "Asymptotic Error Analysis of Multilevel Stochastic Approximations for the Value-at-Risk and Expected Shortfall," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04304985, HAL.
    12. Sergii Kuchuk-Iatsenko & Yuliya Mishura, 2016. "Option pricing in the model with stochastic volatility driven by Ornstein--Uhlenbeck process. Simulation," Papers 1601.01128, arXiv.org.
    13. Rainer Avikainen, 2009. "On irregular functionals of SDEs and the Euler scheme," Finance and Stochastics, Springer, vol. 13(3), pages 381-401, September.
    14. Wei Fang & Zhenru Wang & Michael B. Giles & Chris H. Jackson & Nicky J. Welton & Christophe Andrieu & Howard Thom, 2022. "Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 42(2), pages 168-181, February.
    15. Mouna Ben Derouich & Ahmed Kebaier, 2022. "Interpolated Drift Implicit Euler MLMC Method for Barrier Option Pricing and application to CIR and CEV Models," Papers 2210.00779, arXiv.org, revised Sep 2024.
    16. Proppe, Carsten, 2021. "Local reliability based sensitivity analysis with the moving particles method," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    17. Gerstner, Thomas & Griebel, Michael & Holtz, Markus, 2009. "Efficient deterministic numerical simulation of stochastic asset-liability management models in life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 434-446, June.
    18. Michael Gnewuch & Jan Baldeaux, 2012. "Optimal Randomized Multilevel Algorithms for Infinite-Dimensional Integration on Function Spaces with ANOVA-Type Decomposition," Research Paper Series 313, Quantitative Finance Research Centre, University of Technology, Sydney.
    19. Warne, David J. & Baker, Ruth E. & Simpson, Matthew J., 2018. "Multilevel rejection sampling for approximate Bayesian computation," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 71-86.
    20. Lay Harold A. & Colgin Zane & Reshniak Viktor & Khaliq Abdul Q. M., 2018. "On the implementation of multilevel Monte Carlo simulation of the stochastic volatility and interest rate model using multi-GPU clusters," Monte Carlo Methods and Applications, De Gruyter, vol. 24(4), pages 309-321, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1707.04293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.