IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1705.06141.html
   My bibliography  Save this paper

Mean-variance portfolio selection with nonlinear wealth dynamics and random coefficients

Author

Listed:
  • Shaolin Ji
  • Hanqing Jin
  • Xiaomin Shi

Abstract

This paper studies the continuous time mean-variance portfolio selection problem with one kind of non-linear wealth dynamics. To deal the expectation constraint, an auxiliary stochastic control problem is firstly solved by two new generalized stochastic Riccati equations from which a candidate portfolio in feedback form is constructed, and the corresponding wealth process will never cross the vertex of the parabola. In order to verify the optimality of the candidate portfolio, the convex duality (requires the monotonicity of the cost function) is established to give another more direct expression of the terminal wealth level. The variance-optimal martingale measure and the link between the non-linear financial market and the classical linear market are also provided. Finally, we obtain the efficient frontier in closed form. From our results, people are more likely to invest their money in riskless asset compared with the classical linear market.

Suggested Citation

  • Shaolin Ji & Hanqing Jin & Xiaomin Shi, 2017. "Mean-variance portfolio selection with nonlinear wealth dynamics and random coefficients," Papers 1705.06141, arXiv.org, revised Nov 2022.
  • Handle: RePEc:arx:papers:1705.06141
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1705.06141
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    2. Kohlmann, Michael & Tang, Shanjian, 2002. "Global adapted solution of one-dimensional backward stochastic Riccati equations, with application to the mean-variance hedging," Stochastic Processes and their Applications, Elsevier, vol. 97(2), pages 255-288, February.
    3. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    4. repec:dau:papers:123456789/5647 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew E. B. Lim, 2004. "Quadratic Hedging and Mean-Variance Portfolio Selection with Random Parameters in an Incomplete Market," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 132-161, February.
    2. Shaolin Ji & Xiaomin Shi, 2016. "Explicit solutions for continuous time mean-variance portfolio selection with nonlinear wealth equations," Papers 1606.05488, arXiv.org.
    3. Yumo Zhang, 2022. "Dynamic optimal mean-variance portfolio selection with stochastic volatility and stochastic interest rate," Annals of Finance, Springer, vol. 18(4), pages 511-544, December.
    4. Ying Hu & Xiaomin Shi & Zuo Quan Xu, 2022. "Non-homogeneous stochastic LQ control with regime switching and random coefficients," Papers 2201.01433, arXiv.org, revised Jul 2023.
    5. Johannes Muhle-Karbe & Marcel Nutz & Xiaowei Tan, 2019. "Asset Pricing with Heterogeneous Beliefs and Illiquidity," Papers 1905.05730, arXiv.org, revised Mar 2020.
    6. Ji, Shaolin & Peng, Shige, 2008. "Terminal perturbation method for the backward approach to continuous time mean-variance portfolio selection," Stochastic Processes and their Applications, Elsevier, vol. 118(6), pages 952-967, June.
    7. Wei, Jiaqin & Wang, Tianxiao, 2017. "Time-consistent mean–variance asset–liability management with random coefficients," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 84-96.
    8. Jianjun Gao & Ke Zhou & Duan Li & Xiren Cao, 2014. "Dynamic Mean-LPM and Mean-CVaR Portfolio Optimization in Continuous-time," Papers 1402.3464, arXiv.org.
    9. Andrew E. B. Lim & Xun Yu Zhou, 2002. "Mean-Variance Portfolio Selection with Random Parameters in a Complete Market," Mathematics of Operations Research, INFORMS, vol. 27(1), pages 101-120, February.
    10. Maite Cubas‐Díaz & Miguel Ángel Martínez Sedano, 2018. "Measures for Sustainable Investment Decisions and Business Strategy – A Triple Bottom Line Approach," Business Strategy and the Environment, Wiley Blackwell, vol. 27(1), pages 16-38, January.
    11. Fujii, Masaaki & Takahashi, Akihiko, 2018. "Quadratic–exponential growth BSDEs with jumps and their Malliavin’s differentiability," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 2083-2130.
    12. Xiang Meng, 2019. "Dynamic Mean-Variance Portfolio Optimisation," Papers 1907.03093, arXiv.org.
    13. Zhou Fang, 2023. "Continuous-Time Path-Dependent Exploratory Mean-Variance Portfolio Construction," Papers 2303.02298, arXiv.org.
    14. Ewald, Christian Oliver & Taub, Bart, 2022. "Real options, risk aversion and markets: A corporate finance perspective," Journal of Corporate Finance, Elsevier, vol. 72(C).
    15. Luca De Gennaro Aquino & Sascha Desmettre & Yevhen Havrylenko & Mogens Steffensen, 2024. "Equilibrium control theory for Kihlstrom-Mirman preferences in continuous time," Papers 2407.16525, arXiv.org, revised Oct 2024.
    16. Yaghobipour, S. & Yarahmadi, M., 2018. "Optimal control design for a class of quantum stochastic systems with financial applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 507-522.
    17. Lepeltier, J.-P. & Xu, M., 2005. "Penalization method for reflected backward stochastic differential equations with one r.c.l.l. barrier," Statistics & Probability Letters, Elsevier, vol. 75(1), pages 58-66, November.
    18. Fujii, Masaaki & Takahashi, Akihiko, 2019. "Solving backward stochastic differential equations with quadratic-growth drivers by connecting the short-term expansions," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1492-1532.
    19. Bouchard Bruno & Tan Xiaolu & Warin Xavier & Zou Yiyi, 2017. "Numerical approximation of BSDEs using local polynomial drivers and branching processes," Monte Carlo Methods and Applications, De Gruyter, vol. 23(4), pages 241-263, December.
    20. Xiangyu Cui & Xun Li & Duan Li & Yun Shi, 2014. "Time Consistent Behavior Portfolio Policy for Dynamic Mean-Variance Formulation," Papers 1408.6070, arXiv.org, revised Aug 2015.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1705.06141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.