IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1704.02036.html
   My bibliography  Save this paper

On a pricing problem for a multi-asset option with general transaction costs

Author

Listed:
  • Pablo Amster
  • Andres P. Mogni

Abstract

We consider a Black-Scholes type equation arising on a pricing model for a multi-asset option with general transaction costs. The pioneering work of Leland is thus extended in two different ways: on the one hand, the problem is multi-dimensional since it involves different underlying assets; on the other hand, the transaction costs are not assumed to be constant (i.e. a fixed proportion of the traded quantity). In this work, we generalize Leland's condition and prove the existence of a viscosity solution for the corresponding fully nonlinear initial value problem using Perron method. Moreover, we develop a numerical ADI scheme to find an approximated solution. We apply this method on a specific multi-asset derivative and we obtain the option price under different pricing scenarios.

Suggested Citation

  • Pablo Amster & Andres P. Mogni, 2017. "On a pricing problem for a multi-asset option with general transaction costs," Papers 1704.02036, arXiv.org, revised Sep 2018.
  • Handle: RePEc:arx:papers:1704.02036
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1704.02036
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    2. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    3. Indranil SenGupta, 2014. "Option Pricing with Transaction Costs and Stochastic Interest Rate," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(5), pages 399-416, November.
    4. Boyle, Phelim P & Vorst, Ton, 1992. "Option Replication in Discrete Time with Transaction Costs," Journal of Finance, American Finance Association, vol. 47(1), pages 271-293, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Amster & A. P. Mogni, 2018. "Adapting the CVA model to Leland's framework," Papers 1802.04837, arXiv.org.
    2. Wang, Jun & Liang, Jin-Rong & Lv, Long-Jin & Qiu, Wei-Yuan & Ren, Fu-Yao, 2012. "Continuous time Black–Scholes equation with transaction costs in subdiffusive fractional Brownian motion regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 750-759.
    3. Fischer, Georg, 2019. "How dynamic hedging affects stock price movements: Evidence from German option and certificate markets," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe B-35-19, University of Passau, Faculty of Business and Economics.
    4. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "When Is Time Continuous?," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 3, pages 71-102, World Scientific Publishing Co. Pte. Ltd..
    5. Pascal Franc{c}ois & Genevi`eve Gauthier & Fr'ed'eric Godin & Carlos Octavio P'erez Mendoza, 2024. "Enhancing Deep Hedging of Options with Implied Volatility Surface Feedback Information," Papers 2407.21138, arXiv.org.
    6. Dichtl, Hubert & Drobetz, Wolfgang, 2011. "Portfolio insurance and prospect theory investors: Popularity and optimal design of capital protected financial products," Journal of Banking & Finance, Elsevier, vol. 35(7), pages 1683-1697, July.
    7. Atmaz, Adem & Basak, Suleyman, 2019. "Option prices and costly short-selling," Journal of Financial Economics, Elsevier, vol. 134(1), pages 1-28.
    8. Damgaard, Anders, 2003. "Utility based option evaluation with proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 27(4), pages 667-700, February.
    9. Lin, Zih-Ying & Chang, Chuang-Chang & Wang, Yaw-Huei, 2018. "The impacts of asymmetric information and short sales on the illiquidity risk premium in the stock option market," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 152-165.
    10. Bas Peeters & Cees L. Dert & André Lucas, 2003. "Black Scholes for Portfolios of Options in Discrete Time: the Price is Right, the Hedge is wrong," Tinbergen Institute Discussion Papers 03-090/2, Tinbergen Institute.
    11. Oliver Entrop & Georg Fischer, 2020. "Hedging costs and joint determinants of premiums and spreads in structured financial products," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1049-1071, July.
    12. Al–Zhour, Zeyad & Barfeie, Mahdiar & Soleymani, Fazlollah & Tohidi, Emran, 2019. "A computational method to price with transaction costs under the nonlinear Black–Scholes model," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 291-301.
    13. Constantinides, George M. & Perrakis, Stylianos, 2002. "Stochastic dominance bounds on derivatives prices in a multiperiod economy with proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 26(7-8), pages 1323-1352, July.
    14. Miklavž Mastinšek, 2006. "Discrete–time delta hedging and the Black–Scholes model with transaction costs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(2), pages 227-236, October.
    15. Baule, Rainer & Münchhalfen, Patrick & Shkel, David & Tallau, Christian, 2023. "Fair-washing in the market for structured retail products? Voluntary self-regulation versus government regulation," Journal of Banking & Finance, Elsevier, vol. 148(C).
    16. Peng, Cheng & Li, Shuang & Zhao, Yanlong & Bao, Ying, 2021. "Sample average approximation of CVaR-based hedging problem with a deep-learning solution," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    17. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    18. Gondzio, Jacek & Kouwenberg, Roy & Vorst, Ton, 2003. "Hedging options under transaction costs and stochastic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1045-1068, April.
    19. Balder, Sven & Brandl, Michael & Mahayni, Antje, 2009. "Effectiveness of CPPI strategies under discrete-time trading," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 204-220, January.
    20. John S. Ying & Joel S. Sternberg, 2005. "The Impact of Serial Correlation on Option Prices in a Non- Frictionless Environment: An Alternative Explanation for Volatility Skew," Working Papers 05-12, University of Delaware, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1704.02036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.