IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1701.04167.html
   My bibliography  Save this paper

Worst-Case Expected Shortfall with Univariate and Bivariate Marginals

Author

Listed:
  • Anulekha Dhara
  • Bikramjit Das
  • Karthik Natarajan

Abstract

Worst-case bounds on the expected shortfall risk given only limited information on the distribution of the random variables has been studied extensively in the literature. In this paper, we develop a new worst-case bound on the expected shortfall when the univariate marginals are known exactly and additional expert information is available in terms of bivariate marginals. Such expert information allows for one to choose from among the many possible parametric families of bivariate copulas. By considering a neighborhood of distance $\rho$ around the bivariate marginals with the Kullback-Leibler divergence measure, we model the trade-off between conservatism in the worst-case risk measure and confidence in the expert information. Our bound is developed when the only information available on the bivariate marginals forms a tree structure in which case it is efficiently computable using convex optimization. For consistent marginals, as $\rho$ approaches $\infty$, the bound reduces to the comonotonic upper bound and as $\rho$ approaches $0$, the bound reduces to the worst-case bound with bivariates known exactly. We also discuss extensions to inconsistent marginals and instances where the expert information which might be captured using other parameters such as correlations.

Suggested Citation

  • Anulekha Dhara & Bikramjit Das & Karthik Natarajan, 2017. "Worst-Case Expected Shortfall with Univariate and Bivariate Marginals," Papers 1701.04167, arXiv.org.
  • Handle: RePEc:arx:papers:1701.04167
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1701.04167
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
    2. Aharon Ben-Tal & Dick den Hertog & Anja De Waegenaere & Bertrand Melenberg & Gijs Rennen, 2013. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Management Science, INFORMS, vol. 59(2), pages 341-357, April.
    3. Paul Embrechts & Giovanni Puccetti & Ludger Rüschendorf & Ruodu Wang & Antonela Beleraj, 2014. "An Academic Response to Basel 3.5," Risks, MDPI, vol. 2(1), pages 1-24, February.
    4. Soumyadip Ghosh & Shane G. Henderson, 2002. "Chessboard Distributions and Random Vectors with Specified Marginals and Covariance Matrix," Operations Research, INFORMS, vol. 50(5), pages 820-834, October.
    5. Xuan Vinh Doan & Karthik Natarajan, 2012. "On the Complexity of Nonoverlapping Multivariate Marginal Bounds for Probabilistic Combinatorial Optimization Problems," Operations Research, INFORMS, vol. 60(1), pages 138-149, February.
    6. Embrechts, Paul & Puccetti, Giovanni, 2006. "Bounds for functions of multivariate risks," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 526-547, February.
    7. Xuan Vinh Doan & Xiaobo Li & Karthik Natarajan, 2015. "Robustness to Dependency in Portfolio Optimization Using Overlapping Marginals," Operations Research, INFORMS, vol. 63(6), pages 1468-1488, December.
    8. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    9. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anulekha Dhara & Bikramjit Das & Karthik Natarajan, 2021. "Worst-Case Expected Shortfall with Univariate and Bivariate Marginals," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 370-389, January.
    2. Strub, Moris S. & Li, Duan & Cui, Xiangyu & Gao, Jianjun, 2019. "Discrete-time mean-CVaR portfolio selection and time-consistency induced term structure of the CVaR," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
    3. Wei Liu & Li Yang & Bo Yu, 2022. "Kernel density estimation based distributionally robust mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 84(4), pages 1053-1077, December.
    4. Wei Liu & Li Yang & Bo Yu, 2021. "KDE distributionally robust portfolio optimization with higher moment coherent risk," Annals of Operations Research, Springer, vol. 307(1), pages 363-397, December.
    5. Zhu, Shushang & Fan, Minjie & Li, Duan, 2014. "Portfolio management with robustness in both prediction and decision: A mixture model based learning approach," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 1-25.
    6. So Yeon Chun & Alexander Shapiro & Stan Uryasev, 2012. "Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics," Operations Research, INFORMS, vol. 60(4), pages 739-756, August.
    7. Somayyeh Lotfi & Stavros A. Zenios, 2024. "Robust mean-to-CVaR optimization under ambiguity in distributions means and covariance," Review of Managerial Science, Springer, vol. 18(7), pages 2115-2140, July.
    8. Faugeras, Olivier P. & Pagès, Gilles, 2024. "Risk quantization by magnitude and propensity," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 134-147.
    9. Amir Ahmadi-Javid & Malihe Fallah-Tafti, 2017. "Portfolio Optimization with Entropic Value-at-Risk," Papers 1708.05713, arXiv.org.
    10. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    11. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
    12. Benati, S. & Conde, E., 2022. "A relative robust approach on expected returns with bounded CVaR for portfolio selection," European Journal of Operational Research, Elsevier, vol. 296(1), pages 332-352.
    13. Jiang, Chun-Fu & Peng, Hong-Yi & Yang, Yu-Kuan, 2016. "Tail variance of portfolio under generalized Laplace distribution," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 187-203.
    14. R. Tyrrell Rockafellar, 2024. "Distributional robustness, stochastic divergences, and the quadrangle of risk," Computational Management Science, Springer, vol. 21(1), pages 1-30, June.
    15. Karthik Natarajan & Dongjian Shi & Kim-Chuan Toh, 2014. "A Probabilistic Model for Minmax Regret in Combinatorial Optimization," Operations Research, INFORMS, vol. 62(1), pages 160-181, February.
    16. Pengyu Qian & Zizhuo Wang & Zaiwen Wen, 2015. "A Composite Risk Measure Framework for Decision Making under Uncertainty," Papers 1501.01126, arXiv.org.
    17. Maria Scutellà & Raffaella Recchia, 2013. "Robust portfolio asset allocation and risk measures," Annals of Operations Research, Springer, vol. 204(1), pages 145-169, April.
    18. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    19. Chang, Zhiqi & Song, Shiji & Zhang, Yuli & Ding, Jian-Ya & Zhang, Rui & Chiong, Raymond, 2017. "Distributionally robust single machine scheduling with risk aversion," European Journal of Operational Research, Elsevier, vol. 256(1), pages 261-274.
    20. Allen, D.E. & Powell, R.J. & Singh, A.K., 2016. "Take it to the limit: Innovative CVaR applications to extreme credit risk measurement," European Journal of Operational Research, Elsevier, vol. 249(2), pages 465-475.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1701.04167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.