IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1612.09469.html
   My bibliography  Save this paper

A spectral method for an Optimal Investment problem with Transaction Costs under Potential Utility

Author

Listed:
  • Javier de Frutos
  • Victor Gaton

Abstract

This paper concerns the numerical solution of the finite-horizon Optimal Investment problem with transaction costs under Potential Utility. The problem is initially posed in terms of an evolutive HJB equation with gradient constraints. In Finite-Horizon Optimal Investment with Transaction Costs: A Parabolic Double Obstacle Problem, Day-Yi, the problem is reformulated as a non-linear parabolic double obstacle problem posed in one spatial variable and defined in an unbounded domain where several explicit properties and formulas are obtained. The restatement of the problem in polar coordinates allows to pose the problem in one spatial variable in a finite domain, avoiding some of the technical difficulties of the numerical solution of the previous statement of the problem. If high precision is required, the spectral numerical method proposed becomes more efficient than simpler methods as finite differences for example.

Suggested Citation

  • Javier de Frutos & Victor Gaton, 2016. "A spectral method for an Optimal Investment problem with Transaction Costs under Potential Utility," Papers 1612.09469, arXiv.org.
  • Handle: RePEc:arx:papers:1612.09469
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1612.09469
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ben-Ameur, Hatem & de Frutos, Javier & Fakhfakh, Tarek & Diaby, Vacaba, 2013. "Upper and lower bounds for convex value functions of derivative contracts," Economic Modelling, Elsevier, vol. 34(C), pages 69-75.
    2. Chiarella, Carl & El-Hassan, Nadima & Kucera, Adam, 1999. "Evaluation of American option prices in a path integral framework using Fourier-Hermite series expansions," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1387-1424, September.
    3. Jin-Chuan Duan & Jean-Guy Simonato, 1998. "Empirical Martingale Simulation for Asset Prices," Management Science, INFORMS, vol. 44(9), pages 1218-1233, September.
    4. Jakša Cvitanić & Ioannis Karatzas, 1996. "Hedging And Portfolio Optimization Under Transaction Costs: A Martingale Approach12," Mathematical Finance, Wiley Blackwell, vol. 6(2), pages 133-165, April.
    5. M. H. A. Davis & A. R. Norman, 1990. "Portfolio Selection with Transaction Costs," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 676-713, November.
    6. Yuh-Dauh Lyuu & Chi-Ning Wu, 2005. "On accurate and provably efficient GARCH option pricing algorithms," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 181-198.
    7. Magill, Michael J. P. & Constantinides, George M., 1976. "Portfolio selection with transactions costs," Journal of Economic Theory, Elsevier, vol. 13(2), pages 245-263, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Kallsen & Johannes Muhle-Karbe, 2013. "The General Structure of Optimal Investment and Consumption with Small Transaction Costs," Papers 1303.3148, arXiv.org, revised May 2015.
    2. Xinfu Chen & Min Dai & Wei Jiang & Cong Qin, 2022. "Asymptotic analysis of long‐term investment with two illiquid and correlated assets," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1133-1169, October.
    3. Dai, Min & Wang, Hefei & Yang, Zhou, 2012. "Leverage management in a bull–bear switching market," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1585-1599.
    4. Albert Altarovici & Max Reppen & H. Mete Soner, 2016. "Optimal Consumption and Investment with Fixed and Proportional Transaction Costs," Papers 1610.03958, arXiv.org.
    5. Adrian Buss & Bernard Dumas, 2019. "The Dynamic Properties of Financial‐Market Equilibrium with Trading Fees," Journal of Finance, American Finance Association, vol. 74(2), pages 795-844, April.
    6. Jörn Sass & Manfred Schäl, 2014. "Numeraire portfolios and utility-based price systems under proportional transaction costs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 37(2), pages 195-234, October.
    7. Erhan Bayraktar & Leonid Dolinskyi & Yan Dolinsky, 2020. "Extended weak convergence and utility maximisation with proportional transaction costs," Finance and Stochastics, Springer, vol. 24(4), pages 1013-1034, October.
    8. Zura Kakushadze, 2015. "Combining Alphas via Bounded Regression," Risks, MDPI, vol. 3(4), pages 1-17, November.
    9. Paolo Guasoni & Johannes Muhle-Karbe, 2012. "Portfolio Choice with Transaction Costs: a User's Guide," Papers 1207.7330, arXiv.org.
    10. CITANNA, Alessandro, 2000. "Proportional transaction costs on asset trades : a note on existence by homotopy methods," HEC Research Papers Series 717, HEC Paris.
    11. Damgaard, Anders, 2003. "Utility based option evaluation with proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 27(4), pages 667-700, February.
    12. Christian Bayer & Bezirgen Veliyev, 2014. "Utility Maximization In A Binomial Model With Transaction Costs: A Duality Approach Based On The Shadow Price Process," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1-27.
    13. Maxim Bichuch, 2011. "Asymptotic Analysis for Optimal Investment in Finite Time with Transaction Costs," Papers 1112.2749, arXiv.org.
    14. Zura Kakushadze, 2014. "Mean-Reversion and Optimization," Papers 1408.2217, arXiv.org, revised Feb 2016.
    15. Kallio, Markku & Ziemba, William T., 2007. "Using Tucker's theorem of the alternative to simplify, review and expand discrete arbitrage theory," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2281-2302, August.
    16. Cuoco, Domenico & Liu, Hong, 2000. "Optimal consumption of a divisible durable good," Journal of Economic Dynamics and Control, Elsevier, vol. 24(4), pages 561-613, April.
    17. Min Dai & Zuo Quan Xu & Xun Yu Zhou, 2009. "Continuous-Time Markowitz's Model with Transaction Costs," Papers 0906.0678, arXiv.org.
    18. Ali Al-Aradi & Sebastian Jaimungal, 2018. "Outperformance and Tracking: Dynamic Asset Allocation for Active and Passive Portfolio Management," Papers 1803.05819, arXiv.org, revised Jul 2018.
    19. Baojun Bian & Xinfu Chen & Min Dai & Shuaijie Qian, 2021. "Penalty method for portfolio selection with capital gains tax," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 1013-1055, July.
    20. Hautsch, Nikolaus & Voigt, Stefan, 2019. "Large-scale portfolio allocation under transaction costs and model uncertainty," Journal of Econometrics, Elsevier, vol. 212(1), pages 221-240.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1612.09469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.