IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v17y2014i04ns0219024914500228.html
   My bibliography  Save this article

Utility Maximization In A Binomial Model With Transaction Costs: A Duality Approach Based On The Shadow Price Process

Author

Listed:
  • CHRISTIAN BAYER

    (Weierstrass Institute, Mohrenstrasse 39, 10117 Berlin, Germany)

  • BEZIRGEN VELIYEV

    (Institute of Applied Mathematics, Heidelberg University, INF 294, 69120 Heidelberg, Germany)

Abstract

We consider the problem of optimizing the expected logarithmic utility of the value of a portfolio in a binomial model with proportional transaction costs with a long time horizon. By duality methods, we can find expressions for the boundaries of the no-trade-region and the asymptotic optimal growth rate, which can be made explicit for small transaction costs (in the sense of an asymptotic expansion). Here we find that, contrary to the classical results in continuous time, see Janeček and Shreve (2004), Finance and Stochastics 8, 181–206, the size of the no-trade-region as well as the asymptotic growth rate depend analytically on the level λ of transaction costs, implying a linear first-order effect of perturbations of (small) transaction costs, in contrast to effects of orders λ1/3 and λ2/3, respectively, as in continuous time models. Following the recent study by Gerhold et al. (2013), Finance and Stochastics 17, 325–354, we obtain the asymptotic expansion by an almost explicit construction of the shadow price process.

Suggested Citation

  • Christian Bayer & Bezirgen Veliyev, 2014. "Utility Maximization In A Binomial Model With Transaction Costs: A Duality Approach Based On The Shadow Price Process," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1-27.
  • Handle: RePEc:wsi:ijtafx:v:17:y:2014:i:04:n:s0219024914500228
    DOI: 10.1142/S0219024914500228
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024914500228
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024914500228?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jakša Cvitanić & Ioannis Karatzas, 1996. "Hedging And Portfolio Optimization Under Transaction Costs: A Martingale Approach12," Mathematical Finance, Wiley Blackwell, vol. 6(2), pages 133-165, April.
    2. Yan Dolinsky & Halil Mete Soner, 2011. "Duality and Convergence for Binomial Markets with Friction," Papers 1106.2095, arXiv.org.
    3. Jörn Sass, 2005. "Portfolio optimization under transaction costs in the CRR model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 61(2), pages 239-259, June.
    4. M. H. A. Davis & A. R. Norman, 1990. "Portfolio Selection with Transaction Costs," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 676-713, November.
    5. Giuseppe Benedetti & Luciano Campi & Jan Kallsen & Johannes Muhle-Karbe, 2011. "On the existence of shadow prices," Working Papers hal-00645980, HAL.
    6. Dumas, Bernard & Luciano, Elisa, 1991. "An Exact Solution to a Dynamic Portfolio Choice Problem under Transactions Costs," Journal of Finance, American Finance Association, vol. 46(2), pages 577-595, June.
    7. Michael Taksar & Michael J. Klass & David Assaf, 1988. "A Diffusion Model for Optimal Portfolio Selection in the Presence of Brokerage Fees," Mathematics of Operations Research, INFORMS, vol. 13(2), pages 277-294, May.
    8. J. Kallsen & J. Muhle-Karbe, 2010. "On using shadow prices in portfolio optimization with transaction costs," Papers 1010.4989, arXiv.org.
    9. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    10. Magill, Michael J. P. & Constantinides, George M., 1976. "Portfolio selection with transactions costs," Journal of Economic Theory, Elsevier, vol. 13(2), pages 245-263, October.
    11. Karel Janeček & Steven Shreve, 2004. "Asymptotic analysis for optimal investment and consumption with transaction costs," Finance and Stochastics, Springer, vol. 8(2), pages 181-206, May.
    12. Gerard Gennotte & Alan Jung, 1994. "Investment Strategies under Transaction Costs: The Finite Horizon Case," Management Science, INFORMS, vol. 40(3), pages 385-404, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Kallsen & Johannes Muhle-Karbe, 2013. "The General Structure of Optimal Investment and Consumption with Small Transaction Costs," Papers 1303.3148, arXiv.org, revised May 2015.
    2. Dai, Min & Wang, Hefei & Yang, Zhou, 2012. "Leverage management in a bull–bear switching market," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1585-1599.
    3. Xinfu Chen & Min Dai & Wei Jiang & Cong Qin, 2022. "Asymptotic analysis of long‐term investment with two illiquid and correlated assets," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1133-1169, October.
    4. Jörn Sass & Manfred Schäl, 2014. "Numeraire portfolios and utility-based price systems under proportional transaction costs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 37(2), pages 195-234, October.
    5. Paolo Guasoni & Johannes Muhle-Karbe, 2012. "Portfolio Choice with Transaction Costs: a User's Guide," Papers 1207.7330, arXiv.org.
    6. Stefan Gerhold & Paolo Guasoni & Johannes Muhle-Karbe & Walter Schachermayer, 2011. "Transaction Costs, Trading Volume, and the Liquidity Premium," Papers 1108.1167, arXiv.org, revised Jan 2013.
    7. S. Gerhold & J. Muhle-Karbe & W. Schachermayer, 2013. "The dual optimizer for the growth-optimal portfolio under transaction costs," Finance and Stochastics, Springer, vol. 17(2), pages 325-354, April.
    8. Stefan Gerhold & Johannes Muhle-Karbe & Walter Schachermayer, 2010. "The dual optimizer for the growth-optimal portfolio under transaction costs," Papers 1005.5105, arXiv.org, revised Oct 2010.
    9. Albert Altarovici & Max Reppen & H. Mete Soner, 2016. "Optimal Consumption and Investment with Fixed and Proportional Transaction Costs," Papers 1610.03958, arXiv.org.
    10. Johannes Muhle-Karbe & Ren Liu, 2012. "Portfolio Selection with Small Transaction Costs and Binding Portfolio Constraints," Papers 1205.4588, arXiv.org, revised Jan 2013.
    11. Erhan Bayraktar & Leonid Dolinskyi & Yan Dolinsky, 2020. "Extended weak convergence and utility maximisation with proportional transaction costs," Finance and Stochastics, Springer, vol. 24(4), pages 1013-1034, October.
    12. Zura Kakushadze, 2015. "Combining Alphas via Bounded Regression," Risks, MDPI, vol. 3(4), pages 1-17, November.
    13. Stefan Gerhold & Paolo Guasoni & Johannes Muhle-Karbe & Walter Schachermayer, 2014. "Transaction costs, trading volume, and the liquidity premium," Finance and Stochastics, Springer, vol. 18(1), pages 1-37, January.
    14. Yingting Miao & Qiang Zhang, 2023. "Optimal Investment and Consumption Strategies with General and Linear Transaction Costs under CRRA Utility," Papers 2304.07672, arXiv.org.
    15. Zura Kakushadze, 2014. "Mean-Reversion and Optimization," Papers 1408.2217, arXiv.org, revised Feb 2016.
    16. Mark Broadie & Weiwei Shen, 2016. "High-Dimensional Portfolio Optimization With Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-49, June.
    17. Johannes Muhle-Karbe & Max Reppen & H. Mete Soner, 2016. "A Primer on Portfolio Choice with Small Transaction Costs," Papers 1612.01302, arXiv.org, revised May 2017.
    18. Adrian Buss & Bernard Dumas, 2019. "The Dynamic Properties of Financial‐Market Equilibrium with Trading Fees," Journal of Finance, American Finance Association, vol. 74(2), pages 795-844, April.
    19. Ren Liu & Johannes Muhle-Karbe & Marko H. Weber, 2014. "Rebalancing with Linear and Quadratic Costs," Papers 1402.5306, arXiv.org, revised Sep 2017.
    20. Martin Herdegen & Johannes Muhle-Karbe, 2018. "Stability of Radner equilibria with respect to small frictions," Finance and Stochastics, Springer, vol. 22(2), pages 443-502, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:17:y:2014:i:04:n:s0219024914500228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.