IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1611.06098.html
   My bibliography  Save this paper

On the wavelets-based SWIFT method for backward stochastic differential equations

Author

Listed:
  • Ki Wai Chau
  • Cornelis W. Oosterlee

Abstract

We propose a numerical algorithm for backward stochastic differential equations based on time discretization and trigonometric wavelets. This method combines the effectiveness of Fourier-based methods and the simplicity of a wavelet-based formula, resulting in an algorithm that is both accurate and easy to implement. Furthermore, we mitigate the problem of errors near the computation boundaries by means of an antireflective boundary technique, giving an improved approximation. We test our algorithm with different numerical experiments.

Suggested Citation

  • Ki Wai Chau & Cornelis W. Oosterlee, 2016. "On the wavelets-based SWIFT method for backward stochastic differential equations," Papers 1611.06098, arXiv.org.
  • Handle: RePEc:arx:papers:1611.06098
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1611.06098
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    2. Bouchard, Bruno & Touzi, Nizar, 2004. "Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 111(2), pages 175-206, June.
    3. Fang, Fang & Oosterlee, Kees, 2008. "Pricing Early-Exercise and Discrete Barrier Options by Fourier-Cosine Series Expansions," MPRA Paper 9248, University Library of Munich, Germany.
    4. Bergman, Yaacov Z, 1995. "Option Pricing with Differential Interest Rates," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 475-500.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carl Chiarella & Boda Kang & Gunter H. Meyer, 2010. "The Evaluation Of Barrier Option Prices Under Stochastic Volatility," Research Paper Series 266, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Jun Cheng & Jin Zhang, 2012. "Analytical pricing of American options," Review of Derivatives Research, Springer, vol. 15(2), pages 157-192, July.
    3. Tat Lung Chan, 2017. "Singular Fourier-Pad\'e Series Expansion of European Option Prices," Papers 1706.06709, arXiv.org, revised Nov 2017.
    4. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    5. Jensen, Mads Vestergaard & Pedersen, Lasse Heje, 2016. "Early option exercise: Never say never," Journal of Financial Economics, Elsevier, vol. 121(2), pages 278-299.
    6. Li, Zhe & Zhang, Weiguo & Zhang, Yue & Yi, Zhigao, 2019. "An analytical approximation approach for pricing European options in a two-price economy," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    7. Evgenii Vladimirov, 2023. "iCOS: Option-Implied COS Method," Papers 2309.00943, arXiv.org, revised Feb 2024.
    8. Weinan E & Martin Hutzenthaler & Arnulf Jentzen & Thomas Kruse, 2021. "Multilevel Picard iterations for solving smooth semilinear parabolic heat equations," Partial Differential Equations and Applications, Springer, vol. 2(6), pages 1-31, December.
    9. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2019. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for High dimensional BSDEs," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(3), pages 391-408, September.
    10. repec:qut:auncer:2013_02 is not listed on IDEAS
    11. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    12. Li, Qian & Wang, Li, 2024. "Option pricing under jump diffusion model," Statistics & Probability Letters, Elsevier, vol. 211(C).
    13. Chen, Ding & Härkönen, Hannu J. & Newton, David P., 2014. "Advancing the universality of quadrature methods to any underlying process for option pricing," Journal of Financial Economics, Elsevier, vol. 114(3), pages 600-612.
    14. Polynice Oyono Ngou & Cody Hyndman, 2014. "A Fourier interpolation method for numerical solution of FBSDEs: Global convergence, stability, and higher order discretizations," Papers 1410.8595, arXiv.org, revised May 2022.
    15. repec:uts:finphd:41 is not listed on IDEAS
    16. Lorenc Kapllani & Long Teng, 2024. "A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations," Papers 2404.08456, arXiv.org.
    17. Lorenc Kapllani & Long Teng, 2020. "Deep learning algorithms for solving high dimensional nonlinear backward stochastic differential equations," Papers 2010.01319, arXiv.org, revised Jun 2022.
    18. A S Hurn & Kenenth A Lindsay & Andrew McClelland, 2013. "On the Efficacy of Fourier Series Approximations for Pricing European and Digital Options," NCER Working Paper Series 90, National Centre for Econometric Research.
    19. Augustyniak, Maciej & Badescu, Alexandru & Bégin, Jean-François, 2023. "A discrete-time hedging framework with multiple factors and fat tails: On what matters," Journal of Econometrics, Elsevier, vol. 232(2), pages 416-444.
    20. Kathrin Glau & Mirco Mahlstedt & Christian Potz, 2018. "A new approach for American option pricing: The Dynamic Chebyshev method," Papers 1806.05579, arXiv.org.
    21. A. Golbabai & L. Ballestra & D. Ahmadian, 2014. "A Highly Accurate Finite Element Method to Price Discrete Double Barrier Options," Computational Economics, Springer;Society for Computational Economics, vol. 44(2), pages 153-173, August.
    22. Carolyn E. Phelan & Daniele Marazzina & Gianluca Fusai & Guido Germano, 2019. "Hilbert transform, spectral filters and option pricing," Annals of Operations Research, Springer, vol. 282(1), pages 273-298, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1611.06098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.