IDEAS home Printed from https://ideas.repec.org/a/spr/pardea/v2y2021i6d10.1007_s42985-021-00089-5.html
   My bibliography  Save this article

Multilevel Picard iterations for solving smooth semilinear parabolic heat equations

Author

Listed:
  • Weinan E

    (Princeton University)

  • Martin Hutzenthaler

    (University of Duisburg-Essen)

  • Arnulf Jentzen

    (ETH Zurich
    University of Münster
    The Chinese University of Hong Kong)

  • Thomas Kruse

    (University of Gießen)

Abstract

We introduce a new family of numerical algorithms for approximating solutions of general high-dimensional semilinear parabolic partial differential equations at single space-time points. The algorithm is obtained through a delicate combination of the Feynman–Kac and the Bismut–Elworthy–Li formulas, and an approximate decomposition of the Picard fixed-point iteration with multilevel accuracy. The algorithm has been tested on a variety of semilinear partial differential equations that arise in physics and finance, with satisfactory results. Analytical tools needed for the analysis of such algorithms, including a semilinear Feynman–Kac formula, a new class of seminorms and their recursive inequalities, are also introduced. They allow us to prove for semilinear heat equations with gradient-independent nonlinearities that the computational complexity of the proposed algorithm is bounded by $$O(d\,{\varepsilon }^{-(4+\delta )})$$ O ( d ε - ( 4 + δ ) ) for any $$\delta \in (0,\infty )$$ δ ∈ ( 0 , ∞ ) under suitable assumptions, where $$d\in {{\mathbb {N}}}$$ d ∈ N is the dimensionality of the problem and $${\varepsilon }\in (0,\infty )$$ ε ∈ ( 0 , ∞ ) is the prescribed accuracy. Moreover, the introduced class of numerical algorithms is also powerful for proving high-dimensional approximation capacities for deep neural networks.

Suggested Citation

  • Weinan E & Martin Hutzenthaler & Arnulf Jentzen & Thomas Kruse, 2021. "Multilevel Picard iterations for solving smooth semilinear parabolic heat equations," Partial Differential Equations and Applications, Springer, vol. 2(6), pages 1-31, December.
  • Handle: RePEc:spr:pardea:v:2:y:2021:i:6:d:10.1007_s42985-021-00089-5
    DOI: 10.1007/s42985-021-00089-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42985-021-00089-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42985-021-00089-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bouchard, Bruno & Touzi, Nizar, 2004. "Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 111(2), pages 175-206, June.
    2. Bergman, Yaacov Z, 1995. "Option Pricing with Differential Interest Rates," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 475-500.
    3. Henry-Labordère, Pierre & Tan, Xiaolu & Touzi, Nizar, 2014. "A numerical algorithm for a class of BSDEs via the branching process," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 1112-1140.
    4. Bender, Christian & Denk, Robert, 2007. "A forward scheme for backward SDEs," Stochastic Processes and their Applications, Elsevier, vol. 117(12), pages 1793-1812, December.
    5. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simonella, Roberta & Vázquez, Carlos, 2023. "XVA in a multi-currency setting with stochastic foreign exchange rates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 59-79.
    2. Lorenc Kapllani & Long Teng, 2024. "A forward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations," Papers 2408.05620, arXiv.org.
    3. Flandoli, Franco & Luo, Dejun & Ricci, Cristiano, 2023. "Numerical computation of probabilities for nonlinear SDEs in high dimension using Kolmogorov equation," Applied Mathematics and Computation, Elsevier, vol. 436(C).
    4. Ariel Neufeld & Philipp Schmocker & Sizhou Wu, 2024. "Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs," Papers 2405.05192, arXiv.org, revised Sep 2024.
    5. Yu Li & Antony Ware, 2024. "A weighted multilevel Monte Carlo method," Papers 2405.03453, arXiv.org.
    6. Joel P. Villarino & 'Alvaro Leitao & Jos'e A. Garc'ia-Rodr'iguez, 2022. "Boundary-safe PINNs extension: Application to non-linear parabolic PDEs in counterparty credit risk," Papers 2210.02175, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pagès, Gilles & Sagna, Abass, 2018. "Improved error bounds for quantization based numerical schemes for BSDE and nonlinear filtering," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 847-883.
    2. Antonis Papapantoleon & Dylan Possamai & Alexandros Saplaouras, 2021. "Stability of backward stochastic differential equations: the general case," Papers 2107.11048, arXiv.org, revised Apr 2023.
    3. Cody B. Hyndman & Polynice Oyono Ngou, 2017. "A Convolution Method for Numerical Solution of Backward Stochastic Differential Equations," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 1-29, March.
    4. Bendera, Christian & Moseler, Thilo, 2008. "Importance sampling for backward SDEs," CoFE Discussion Papers 08/11, University of Konstanz, Center of Finance and Econometrics (CoFE).
    5. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2019. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for High dimensional BSDEs," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(3), pages 391-408, September.
    6. Christian Bender & Nikolaus Schweizer & Jia Zhuo, 2013. "A primal-dual algorithm for BSDEs," Papers 1310.3694, arXiv.org, revised Sep 2014.
    7. Polynice Oyono Ngou & Cody Hyndman, 2014. "A Fourier interpolation method for numerical solution of FBSDEs: Global convergence, stability, and higher order discretizations," Papers 1410.8595, arXiv.org, revised May 2022.
    8. Qiang Han & Shaolin Ji, 2022. "A Multi-Step Algorithm for BSDEs Based On a Predictor-Corrector Scheme and Least-Squares Monte Carlo," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2403-2426, December.
    9. Masaaki Fujii & Akihiko Takahashi, 2016. "Solving Backward Stochastic Differential Equations by Connecting the Short-term Expansions(Revised version of CARF-F-387)," CARF F-Series CARF-F-398, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    10. Monique Jeanblanc & Thibaut Mastrolia & Dylan Possamaï & Anthony Réveillac, 2015. "Utility Maximization With Random Horizon: A Bsde Approach," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(07), pages 1-43, November.
    11. Masaaki Fujii & Akihiko Takahashi, 2015. "Asymptotic Expansion for Forward-Backward SDEs with Jumps," Papers 1510.03220, arXiv.org, revised Sep 2018.
    12. Masaaki Fujii & Akihiko Takahashi, 2016. "Solving Backward Stochastic Differential Equations by Connecting the Short-term Expansions," CIRJE F-Series CIRJE-F-1016, CIRJE, Faculty of Economics, University of Tokyo.
    13. Masaaki Fujii, 2014. "A Polynomial Scheme of Asymptotic Expansion for Backward SDEs and Option pricing," Papers 1405.0378, arXiv.org, revised Dec 2014.
    14. Ioannis Exarchos & Evangelos Theodorou & Panagiotis Tsiotras, 2019. "Stochastic Differential Games: A Sampling Approach via FBSDEs," Dynamic Games and Applications, Springer, vol. 9(2), pages 486-505, June.
    15. Ren, Zhenjie & Tan, Xiaolu, 2017. "On the convergence of monotone schemes for path-dependent PDEs," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 1738-1762.
    16. Dirk Becherer & Plamen Turkedjiev, 2014. "Multilevel approximation of backward stochastic differential equations," Papers 1412.3140, arXiv.org.
    17. Lucio Fiorin & Gilles Pagès & Abass Sagna, 2019. "Product Markovian Quantization of a Diffusion Process with Applications to Finance," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1087-1118, December.
    18. Masaaki Fujii, 2014. "A Polynomial Scheme of Asymptotic Expansion for Backward SDEs and Option pricing," CARF F-Series CARF-F-343, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Dec 2014.
    19. dos Reis, Gonçalo & Réveillac, Anthony & Zhang, Jianing, 2011. "FBSDEs with time delayed generators: Lp-solutions, differentiability, representation formulas and path regularity," Stochastic Processes and their Applications, Elsevier, vol. 121(9), pages 2114-2150, September.
    20. Masaaki Fujii, 2014. "A Polynomial Scheme of Asymptotic Expansion for Backward SDEs and Option pricing," CIRJE F-Series CIRJE-F-931, CIRJE, Faculty of Economics, University of Tokyo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pardea:v:2:y:2021:i:6:d:10.1007_s42985-021-00089-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.