IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1609.05286.html
   My bibliography  Save this paper

From quantum mechanics to finance: Microfoundations for jumps, spikes and high volatility phases in diffusion price processes

Author

Listed:
  • Christof Henkel

Abstract

We present an agent behavior based microscopic model that induces jumps, spikes and high volatility phases in the price process of a traded asset. We transfer dynamics of thermally activated jumps of an unexcited/ excited two state system discussed in the context of quantum mechanics to agent socio-economic behavior and provide microfoundations. After we link the endogenous agent behavior to price dynamics we establish the circumstances under which the dynamics converge to an It\^o-diffusion price processes in the large market limit.

Suggested Citation

  • Christof Henkel, 2016. "From quantum mechanics to finance: Microfoundations for jumps, spikes and high volatility phases in diffusion price processes," Papers 1609.05286, arXiv.org, revised Oct 2016.
  • Handle: RePEc:arx:papers:1609.05286
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1609.05286
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Horst, Ulrich & Rothe, Christian, 2008. "Queuing, Social Interactions, And The Microstructure Of Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 12(2), pages 211-233, April.
    2. Gérard Weisbuch & Gérard Boudjema, 1999. "Dynamical Aspects in the Adoption of Agri-Environmental Measures," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 11-36.
    3. Christof Henkel, 2016. "An agent behavior based model for diffusion price processes with application to phase transition and oscillations," Papers 1606.08269, arXiv.org.
    4. Lux, Thomas, 1997. "Time variation of second moments from a noise trader/infection model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(1), pages 1-38, November.
    5. Ulrich Horst, 2005. "Financial price fluctuations in a stock market model with many interacting agents," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 25(4), pages 917-932, June.
    6. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1157-1165.
    7. Hamilton, James D & Gang, Lin, 1996. "Stock Market Volatility and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 573-593, Sept.-Oct.
    8. Erhan Bayraktar & Ulrich Horst & Ronnie Sircar, 2006. "A Limit Theorem for Financial Markets with Inert Investors," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 789-810, November.
    9. Hans Föllmer & Martin Schweizer, 1993. "A Microeconomic Approach to Diffusion Models For Stock Prices," Mathematical Finance, Wiley Blackwell, vol. 3(1), pages 1-23, January.
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    12. Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-896, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henkel, Christof, 2017. "From quantum mechanics to finance: Microfoundations for jumps, spikes and high volatility phases in diffusion price processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 447-458.
    2. Christof Henkel, 2016. "An agent behavior based model for diffusion price processes with application to phase transition and oscillations," Papers 1606.08269, arXiv.org.
    3. Erhan Bayraktar & Ulrich Horst & Ronnie Sircar, 2007. "Queueing Theoretic Approaches to Financial Price Fluctuations," Papers math/0703832, arXiv.org.
    4. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    5. Biao Wu, 2007. "Interacting Agent Feedback Finance Model," Papers math/0703827, arXiv.org.
    6. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    7. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    8. Gunter M. Schutz & Fernando Pigeard de Almeida Prado & Rosemary J. Harris & Vladimir Belitsky, 2007. "Short-time behaviour of demand and price viewed through an exactly solvable model for heterogeneous interacting market agents," Papers 0801.0003, arXiv.org, revised Jun 2009.
    9. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2008. "Time variation of higher moments in a financial market with heterogeneous agents: An analytical approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 101-136, January.
    10. Chiarella, Carl & He, Xue-Zhong & Zheng, Min, 2011. "An analysis of the effect of noise in a heterogeneous agent financial market model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(1), pages 148-162, January.
    11. Lux, Thomas, 2009. "Rational forecasts or social opinion dynamics? Identification of interaction effects in a business climate survey," Journal of Economic Behavior & Organization, Elsevier, vol. 72(2), pages 638-655, November.
    12. Thomas Holtfort, 2019. "From standard to evolutionary finance: a literature survey," Management Review Quarterly, Springer, vol. 69(2), pages 207-232, June.
    13. Hommes, C.H., 2005. "Heterogeneous Agent Models in Economics and Finance, In: Handbook of Computational Economics II: Agent-Based Computational Economics, edited by Leigh Tesfatsion and Ken Judd , Elsevier, Amsterdam 2006," CeNDEF Working Papers 05-03, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    14. Schütz, Gunter M. & de Almeida Prado, Fernando Pigeard & Harris, Rosemary J. & Belitsky, Vladimir, 2009. "Short-time behaviour of demand and price viewed through an exactly solvable model for heterogeneous interacting market agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4126-4144.
    15. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    16. Konno, Tomohiko & Ioannides, Yannis M., 2019. "The exact solution of spatial logit response games," Mathematical Social Sciences, Elsevier, vol. 97(C), pages 1-10.
    17. Tae-Seok Jang, 2015. "Identification of Social Interaction Effects in Financial Data," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 207-238, February.
    18. Ulrich Horst & Wei Xu, 2019. "The Microstructure of Stochastic Volatility Models with Self-Exciting Jump Dynamics," Papers 1911.12969, arXiv.org.
    19. Thomas Lux, 2009. "Rational Forecasts or Social Opinion Dynamics? Identification of Interaction Effects in a Business Climate Survey," Post-Print hal-00720175, HAL.
    20. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1609.05286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.