IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/11150.html
   My bibliography  Save this paper

Algorithmic complexity theory and the relative efficiency of financial markets - Updated

Author

Listed:
  • Giglio, Ricardo
  • Matsushita, Raul
  • Figueiredo, Annibal
  • Gleria, Iram
  • Da Silva, Sergio

Abstract

Financial economists usually assess market efficiency in absolute terms. This is to be viewed as a shortcoming. One way of dealing with the relative efficiency of markets is to resort to the efficiency interpretation provided by algorithmic complexity theory. We employ such an approach in order to rank 36 stock exchanges and 20 US dollar exchange rates in terms of their relative efficiency.

Suggested Citation

  • Giglio, Ricardo & Matsushita, Raul & Figueiredo, Annibal & Gleria, Iram & Da Silva, Sergio, 2008. "Algorithmic complexity theory and the relative efficiency of financial markets - Updated," MPRA Paper 11150, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:11150
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/11150/1/MPRA_paper_11150.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristescu, C.P. & Stan, C. & Scarlat, E.I., 2009. "The dynamics of exchange rate time series and the chaos game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(23), pages 4845-4855.
    2. Alvarez-Ramirez, J. & Rodriguez, E. & Espinosa-Paredes, G., 2012. "A partisan effect in the efficiency of the US stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4923-4932.
    3. Li, Yiying & Ren, Xiaohang & Taghizadeh-Hesary, Farhad, 2023. "Vulnerability of sustainable markets to fossil energy shocks," Resources Policy, Elsevier, vol. 85(PB).
    4. Wang, Fang & Gacesa, Marko, 2023. "Semi-strong efficient market of Bitcoin and Twitter: An analysis of semantic vector spaces of extracted keywords and light gradient boosting machine models," International Review of Financial Analysis, Elsevier, vol. 88(C).
    5. Lucio Maria Calcagnile & Fulvio Corsi & Stefano Marmi, 2016. "Entropy and efficiency of the ETF market," Papers 1609.04199, arXiv.org.
    6. Shternshis, Andrey & Mazzarisi, Piero & Marmi, Stefano, 2022. "Measuring market efficiency: The Shannon entropy of high-frequency financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    7. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    8. Andrey Shternshis & Piero Mazzarisi, 2022. "Variance of entropy for testing time-varying regimes with an application to meme stocks," Papers 2211.05415, arXiv.org, revised Jun 2023.
    9. Lucio Maria Calcagnile & Fulvio Corsi & Stefano Marmi, 2020. "Entropy and Efficiency of the ETF Market," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 143-184, January.
    10. Lahmiri, Salim & Bekiros, Stelios & Avdoulas, Christos, 2018. "Time-dependent complexity measurement of causality in international equity markets: A spatial approach," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 215-219.
    11. Da Silva, Sergio, 2015. "Financial Market Efficiency Should be Gauged in Relative Rather than Absolute Terms," MPRA Paper 64497, University Library of Munich, Germany.
    12. Brouty, Xavier & Garcin, Matthieu, 2024. "Fractal properties, information theory, and market efficiency," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).

    More about this item

    Keywords

    financial market efficiency; algorithmic complexity theory;

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:11150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.