IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1607.03522.html
   My bibliography  Save this paper

Continuous tenor extension of affine LIBOR models with multiple curves and applications to XVA

Author

Listed:
  • Antonis Papapantoleon
  • Robert Wardenga

Abstract

We consider the class of affine LIBOR models with multiple curves, which is an analytically tractable class of discrete tenor models that easily accommodates positive or negative interest rates and positive spreads. By introducing an interpolating function, we extend the affine LIBOR models to a continuous tenor and derive expressions for the instantaneous forward rate and the short rate. We show that the continuous tenor model is arbitrage-free, that the analytical tractability is retained under the spot martingale measure, and that under mild conditions an interpolating function can be found such that the extended model fits any initial forward curve. This allows us to compute value adjustments (i.e. XVAs) consistently, by solving the corresponding `pre-default' BSDE. As an application, we compute the price and value adjustments for a basis swap, and study the model risk associated to different interpolating functions.

Suggested Citation

  • Antonis Papapantoleon & Robert Wardenga, 2016. "Continuous tenor extension of affine LIBOR models with multiple curves and applications to XVA," Papers 1607.03522, arXiv.org, revised Feb 2017.
  • Handle: RePEc:arx:papers:1607.03522
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1607.03522
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zorana Grbac & Antonis Papapantoleon & John Schoenmakers & David Skovmand, 2014. "Affine LIBOR models with multiple curves: theory, examples and calibration," Papers 1405.2450, arXiv.org, revised Aug 2015.
    2. Marek Rutkowski & Marek Musiela, 1997. "Continuous-time term structure models: Forward measure approach (*)," Finance and Stochastics, Springer, vol. 1(4), pages 261-291.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek Rutkowski & Matthew Bickersteth, 2021. "Pricing and Hedging of SOFR Derivatives under Differential Funding Costs and Collateralization," Papers 2112.14033, arXiv.org.
    2. Tim Dun & Geoff Barton & Erik Schlögl, 2001. "Simulated Swaption Delta–Hedging In The Lognormal Forward Libor Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 677-709.
    3. Ting‐Pin Wu & Son‐Nan Chen, 2008. "Valuation of floating range notes in a LIBOR market model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(7), pages 697-710, July.
    4. Glasserman, P. & Zhao, X., 1998. "Arbitrage-Free Discretization of Lognormal Forward Libor and Swap Rate Models," Papers 98-09, Columbia - Graduate School of Business.
    5. Beveridge, Christopher & Joshi, Mark & Tang, Robert, 2013. "Practical policy iteration: Generic methods for obtaining rapid and tight bounds for Bermudan exotic derivatives using Monte Carlo simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 37(7), pages 1342-1361.
    6. Linlin Xu & Giray Ökten, 2015. "High-performance financial simulation using randomized quasi-Monte Carlo methods," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1425-1436, August.
    7. Massoud Heidari & Liuren Wu, 2002. "Term Structure of Interest Rates, Yield Curve Residuals, and the Consistent Pricing of Interest Rates and Interest Rate Derivatives," Finance 0207010, University Library of Munich, Germany, revised 10 Sep 2002.
    8. Claudio Fontana & Zorana Grbac & Sandrine Gümbel & Thorsten Schmidt, 2020. "Term structure modelling for multiple curves with stochastic discontinuities," Post-Print hal-03898927, HAL.
    9. Takashi Yasuoka, 2001. "Mathematical Pseudo-Completion Of The Bgm Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 375-401.
    10. Stefan Waldenberger & Wolfgang Muller, 2015. "Affine LIBOR models driven by real-valued affine processes," Papers 1503.00864, arXiv.org.
    11. Barsotti, Flavia & Milhaud, Xavier & Salhi, Yahia, 2016. "Lapse risk in life insurance: Correlation and contagion effects among policyholders’ behaviors," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 317-331.
    12. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    13. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    14. S. Galluccio & J.‐M. Ly & Z. Huang & O. Scaillet, 2007. "Theory And Calibration Of Swap Market Models," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 111-141, January.
    15. Jacques Van Appel & Thomas A. Mcwalter, 2018. "Efficient Long-Dated Swaption Volatility Approximation In The Forward-Libor Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-26, June.
    16. Sandrine Gumbel & Thorsten Schmidt, 2020. "Machine learning for multiple yield curve markets: fast calibration in the Gaussian affine framework," Papers 2004.07736, arXiv.org, revised Apr 2020.
    17. Pierre-Edouard Arrouy & Sophian Mehalla & Bernard Lapeyre & Alexandre Boumezoued, 2020. "Jacobi Stochastic Volatility factor for the Libor Market Model," Working Papers hal-02468583, HAL.
    18. Da Fonseca, José & Gnoatto, Alessandro & Grasselli, Martino, 2013. "A flexible matrix Libor model with smiles," Journal of Economic Dynamics and Control, Elsevier, vol. 37(4), pages 774-793.
    19. Ernst Eberlein & Christoph Gerhart & Zorana Grbac, 2019. "Multiple curve Lévy forward price model allowing for negative interest rates," Post-Print hal-03898912, HAL.
    20. Dai, Qiang & Singleton, Kenneth J., 2003. "Fixed-income pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 20, pages 1207-1246, Elsevier.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1607.03522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.