IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1607.00077.html
   My bibliography  Save this paper

Existence of a calibrated regime switching local volatility model and new fake Brownian motions

Author

Listed:
  • Benjamin Jourdain
  • Alexandre Zhou

Abstract

By Gyongy's theorem, a local and stochastic volatility (LSV) model is calibrated to the market prices of all European call options with positive maturities and strikes if its local volatility function is equal to the ratio of the Dupire local volatility function over the root conditional mean square of the stochastic volatility factor given the spot value. This leads to a SDE nonlinear in the sense of McKean. Particle methods based on a kernel approximation of the conditional expectation, as presented by Guyon and Henry-Labord\`ere (2011), provide an efficient calibration procedure even if some calibration errors may appear when the range of the stochastic volatility factor is very large. But so far, no global existence result is available for the SDE nonlinear in the sense of McKean. In the particular case where the local volatility function is equal to the inverse of the root conditional mean square of the stochastic volatility factor multiplied by the spot value given this value and the interest rate is zero, the solution to the SDE is a fake Brownian motion. When the stochastic volatility factor is a constant (over time) random variable taking finitely many values and the range of its square is not too large, we prove existence to the associated Fokker-Planck equation. Thanks to Figalli (2008), we then deduce existence of a new class of fake Brownian motions. We then extend these results to the special case of the LSV model called regime switching local volatility, where the stochastic volatility factor is a jump process taking finitely many values and with jump intensities depending on the spot level. Under the same condition on the range of its square, we prove existence to the associated Fokker-Planck PDE. Finally, we deduce existence of the calibrated model by extending the results in Figalli (2008).

Suggested Citation

  • Benjamin Jourdain & Alexandre Zhou, 2016. "Existence of a calibrated regime switching local volatility model and new fake Brownian motions," Papers 1607.00077, arXiv.org, revised Jan 2017.
  • Handle: RePEc:arx:papers:1607.00077
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1607.00077
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mao Fabrice Djete, 2022. "Non--regular McKean--Vlasov equations and calibration problem in local stochastic volatility models," Papers 2208.09986, arXiv.org, revised Oct 2024.
    2. Yuri F. Saporito & Xu Yang & Jorge P. Zubelli, 2017. "The Calibration of Stochastic-Local Volatility Models - An Inverse Problem Perspective," Papers 1711.03023, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    2. Xiang Meng, 2019. "Dynamic Mean-Variance Portfolio Optimisation," Papers 1907.03093, arXiv.org.
    3. Ivanova, Vesela & Puigvert Gutiérrez, Josep Maria, 2014. "Interest rate forecasts, state price densities and risk premium from Euribor options," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 210-223.
    4. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    5. Marins, Jaqueline Terra Moura & Vicente, José Valentim Machado, 2017. "Do the central bank actions reduce interest rate volatility?," Economic Modelling, Elsevier, vol. 65(C), pages 129-137.
    6. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    7. John Armstrong & Teemu Pennanen & Udomsak Rakwongwan, 2018. "Pricing Index Options By Static Hedging Under Finite Liquidity," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-18, September.
    8. Barone-Adesi, Giovanni & Fusari, Nicola & Mira, Antonietta & Sala, Carlo, 2020. "Option market trading activity and the estimation of the pricing kernel: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 216(2), pages 430-449.
    9. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, December.
    10. Petros Dellaportas & Aleksandar Mijatovi'c, 2014. "Arbitrage-free prediction of the implied volatility smile," Papers 1407.5528, arXiv.org.
    11. Carvalho, Augusto & Guimaraes, Bernardo, 2018. "State-controlled companies and political risk: Evidence from the 2014 Brazilian election," Journal of Public Economics, Elsevier, vol. 159(C), pages 66-78.
    12. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    13. Geert Bekaert & Eric Engstrom, 2017. "Asset Return Dynamics under Habits and Bad Environment-Good Environment Fundamentals," Journal of Political Economy, University of Chicago Press, vol. 125(3), pages 713-760.
    14. Kitsul, Yuriy & Wright, Jonathan H., 2013. "The economics of options-implied inflation probability density functions," Journal of Financial Economics, Elsevier, vol. 110(3), pages 696-711.
    15. Damiano Brigo, 2008. "The general mixture-diffusion SDE and its relationship with an uncertain-volatility option model with volatility-asset decorrelation," Papers 0812.4052, arXiv.org.
    16. Mr. Prakash Kannan & Mr. Selim A Elekdag, 2009. "Incorporating Market Information into the Construction of the Fan Chart," IMF Working Papers 2009/178, International Monetary Fund.
    17. Jobst, Andreas A., 2014. "Measuring systemic risk-adjusted liquidity (SRL)—A model approach," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 270-287.
    18. Todorov, Viktor & Zhang, Yang, 2023. "Bias reduction in spot volatility estimation from options," Journal of Econometrics, Elsevier, vol. 234(1), pages 53-81.
    19. Lynn Boen & Florence Guillaume, 2020. "Towards a $$\Delta $$Δ-Gamma Sato multivariate model," Review of Derivatives Research, Springer, vol. 23(1), pages 1-39, April.
    20. Malz, Allan M., 1996. "Using option prices to estimate realignment probabilities in the European Monetary System: the case of sterling-mark," Journal of International Money and Finance, Elsevier, vol. 15(5), pages 717-748, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1607.00077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.