IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1604.02759.html
   My bibliography  Save this paper

Reconstruction of Order Flows using Aggregated Data

Author

Listed:
  • Ioane Muni Toke

Abstract

In this work we investigate tick-by-tick data provided by the TRTH database for several stocks on three different exchanges (Paris - Euronext, London and Frankfurt - Deutsche B\"orse) and on a 5-year span. We use a simple algorithm that helps the synchronization of the trades and quotes data sources, providing enhancements to the basic procedure that, depending on the time period and the exchange, are shown to be significant. We show that the analysis of the performance of this algorithm turns out to be a a forensic tool assessing the quality of the aggregated database: we are able to track through the data some significant technical changes that occurred on the studied exchanges. We also illustrate the fact that the choices made when reconstructing order flows have consequences on the quantitative models that are calibrated afterwards on such data. Our study also provides elements on the trade signature, and we are able to give a more refined look at the standard Lee-Ready procedure, giving new elements on the way optimal lags should be chosen when using this method. The findings are in line with both financial reasoning and the analysis of an illustrative Poisson model of the order flow.

Suggested Citation

  • Ioane Muni Toke, 2016. "Reconstruction of Order Flows using Aggregated Data," Papers 1604.02759, arXiv.org.
  • Handle: RePEc:arx:papers:1604.02759
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1604.02759
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mehdi Lallouache & Damien Challet, 2016. "The limits of statistical significance of Hawkes processes fitted to financial data," Quantitative Finance, Taylor & Francis Journals, vol. 16(1), pages 1-11, January.
    2. I. Muni Toke, 2015. "The order book as a queueing system: average depth and influence of the size of limit orders," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 795-808, May.
    3. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    4. Theissen, Erik, 2001. "A test of the accuracy of the Lee/Ready trade classification algorithm," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 11(2), pages 147-165, June.
    5. Easley, David & de Prado, Marcos Lopez & O'Hara, Maureen, 2016. "Discerning information from trade data," Journal of Financial Economics, Elsevier, vol. 120(2), pages 269-285.
    6. Vladimir Filimonov & Didier Sornette, 2012. "Quantifying reflexivity in financial markets: towards a prediction of flash crashes," Papers 1201.3572, arXiv.org, revised Apr 2012.
    7. Toke, Ioane Muni & Pomponio, Fabrizio, 2012. "Modelling trades-through in a limit order book using hawkes processes," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-23.
    8. Large, Jeremy, 2007. "Measuring the resiliency of an electronic limit order book," Journal of Financial Markets, Elsevier, vol. 10(1), pages 1-25, February.
    9. Weibing Huang & Charles-Albert Lehalle & Mathieu Rosenbaum, 2015. "Simulating and Analyzing Order Book Data: The Queue-Reactive Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 107-122, March.
    10. Stephen Hardiman & Nicolas Bercot & Jean-Philippe Bouchaud, 2013. "Critical reflexivity in financial markets: a Hawkes process analysis," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(10), pages 1-9, October.
    11. Ellis, Katrina & Michaely, Roni & O'Hara, Maureen, 2000. "The Accuracy of Trade Classification Rules: Evidence from Nasdaq," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(4), pages 529-551, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioane Muni Toke & Nakahiro Yoshida, 2019. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Working Papers hal-01799398, HAL.
    2. Ioane Muni Toke, 2017. "Stationary Distribution Of The Volume At The Best Quote In A Poisson Order Book Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(06), pages 1-22, September.
    3. Clinet, Simon & Potiron, Yoann, 2019. "Testing if the market microstructure noise is fully explained by the informational content of some variables from the limit order book," Journal of Econometrics, Elsevier, vol. 209(2), pages 289-337.
    4. Rannou, Yves, 2019. "Limit order books, uninformed traders and commodity derivatives: Insights from the European carbon futures," Economic Modelling, Elsevier, vol. 81(C), pages 387-410.
    5. Ioane Muni Toke & Nakahiro Yoshida, 2020. "Marked point processes and intensity ratios for limit order book modeling," Papers 2001.08442, arXiv.org.
    6. Ioane Muni Toke & Nakahiro Yoshida, 2022. "Marked point processes and intensity ratios for limit order book modeling," Post-Print hal-02465428, HAL.
    7. Ioane Muni Toke & Nakahiro Yoshida, 2018. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Papers 1805.06682, arXiv.org, revised Aug 2019.
    8. Ioane Muni Toke & Nakahiro Yoshida, 2020. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Post-Print hal-01799398, HAL.
    9. Hamza Bodor & Laurent Carlier, 2024. "Stylized Facts and Market Microstructure: An In-Depth Exploration of German Bond Futures Market," Papers 2401.10722, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioane Muni Toke, 2016. "Reconstruction of Order Flows using Aggregated Data," Post-Print hal-01705074, HAL.
    2. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    3. Roger Martins & Dieter Hendricks, 2016. "The statistical significance of multivariate Hawkes processes fitted to limit order book data," Papers 1604.01824, arXiv.org, revised Apr 2016.
    4. Hai-Chuan Xu & Wei-Xing Zhou, 2020. "Modeling aggressive market order placements with Hawkes factor models," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-12, January.
    5. Maxime Morariu-Patrichi & Mikko Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," CREATES Research Papers 2018-26, Department of Economics and Business Economics, Aarhus University.
    6. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," Papers 1809.08060, arXiv.org, revised Sep 2021.
    7. Ioane Muni Toke & Nakahiro Yoshida, 2020. "Marked point processes and intensity ratios for limit order book modeling," Papers 2001.08442, arXiv.org.
    8. Lucio Maria Calcagnile & Giacomo Bormetti & Michele Treccani & Stefano Marmi & Fabrizio Lillo, 2015. "Collective synchronization and high frequency systemic instabilities in financial markets," Papers 1505.00704, arXiv.org.
    9. Emmanuel Bacry & Thibault Jaisson & Jean-Francois Muzy, 2014. "Estimation of slowly decreasing Hawkes kernels: Application to high frequency order book modelling," Papers 1412.7096, arXiv.org.
    10. Ioane Muni Toke & Nakahiro Yoshida, 2022. "Marked point processes and intensity ratios for limit order book modeling," Post-Print hal-02465428, HAL.
    11. Choi, So Eun & Jang, Hyun Jin & Lee, Kyungsub & Zheng, Harry, 2021. "Optimal market-Making strategies under synchronised order arrivals with deep neural networks," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    12. Ioane Muni Toke & Nakahiro Yoshida, 2020. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Post-Print hal-01799398, HAL.
    13. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2017. "Hybrid marked point processes: characterisation, existence and uniqueness," Papers 1707.06970, arXiv.org, revised Oct 2018.
    14. Bilodeau, Yann, 2020. "Deep limit order book events dynamics," Working Papers 20-4, HEC Montreal, Canada Research Chair in Risk Management.
    15. Marcello Rambaldi & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2018. "Disentangling and quantifying market participant volatility contributions," Papers 1807.07036, arXiv.org.
    16. Anatoliy Swishchuk & Aiden Huffman, 2020. "General Compound Hawkes Processes in Limit Order Books," Risks, MDPI, vol. 8(1), pages 1-25, March.
    17. Steffen Volkenand & Günther Filler & Martin Odening, 2020. "Price Discovery and Market Reflexivity in Agricultural Futures Contracts with Different Maturities," Risks, MDPI, vol. 8(3), pages 1-17, July.
    18. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of a point-process market-model with a matching engine," Papers 2105.02211, arXiv.org, revised Aug 2021.
    19. Massil Achab & Emmanuel Bacry & Jean-Franc{c}ois Muzy & Marcello Rambaldi, 2017. "Analysis of order book flows using a nonparametric estimation of the branching ratio matrix," Papers 1706.03411, arXiv.org.
    20. Thibault Jaisson, 2014. "Market impact as anticipation of the order flow imbalance," Papers 1402.1288, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1604.02759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.