IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1602.02192.html
   My bibliography  Save this paper

On minimising a portfolio's shortfall probability

Author

Listed:
  • Anatolii A. Puhalskii
  • Michael Jay Stutzer

Abstract

We obtain a lower asymptotic bound on the decay rate of the probability of a portfolio's underperformance against a benchmark over a large time horizon. It is assumed that the prices of the securities are governed by geometric Brownian motions with the coefficients depending on an economic factor, possibly nonlinearly. The economic factor is modelled with a general Ito equation. The bound is shown to be tight. More specifically, epsilon-optimal portfolios are obtained under additional conditions.

Suggested Citation

  • Anatolii A. Puhalskii & Michael Jay Stutzer, 2016. "On minimising a portfolio's shortfall probability," Papers 1602.02192, arXiv.org, revised May 2017.
  • Handle: RePEc:arx:papers:1602.02192
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1602.02192
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Stutzer, 2011. "Portfolio choice with endogenous utility: a large deviations approach," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 43, pages 619-640, World Scientific Publishing Co. Pte. Ltd..
    2. Veretennikov, A. Yu., 1997. "On polynomial mixing bounds for stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 70(1), pages 115-127, October.
    3. Hiroaki Hata & Hideo Nagai & Shuenn-Jyi Sheu, 2010. "Asymptotics of the probability minimizing a "down-side" risk," Papers 1001.2131, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huyen Pham, 2014. "Long time asymptotics for optimal investment," Working Papers hal-01058657, HAL.
    2. Huyen Pham, 2014. "Long time asymptotics for optimal investment," Papers 1408.6455, arXiv.org.
    3. Hideo Nagai, 2011. "Asymptotics of the probability of minimizing 'down-side' risk under partial information," Quantitative Finance, Taylor & Francis Journals, vol. 11(5), pages 789-803.
    4. Anatolii A. Puhalskii, 2003. "On Large Deviation Convergence of Invariant Measures," Journal of Theoretical Probability, Springer, vol. 16(3), pages 689-724, July.
    5. Haley, M. Ryan, 2008. "A simple nonparametric approach to low-dimension, shortfall-based portfolio selection," Finance Research Letters, Elsevier, vol. 5(3), pages 183-190, September.
    6. Yuji Sakamoto & Nakahiro Yoshida, 2009. "Third-order asymptotic expansion of M-estimators for diffusion processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(3), pages 629-661, September.
    7. Guillin, A. & Liptser, R., 2005. "MDP for integral functionals of fast and slow processes with averaging," Stochastic Processes and their Applications, Elsevier, vol. 115(7), pages 1187-1207, July.
    8. Cayé, Thomas & Herdegen, Martin & Muhle-Karbe, Johannes, 2020. "Scaling limits of processes with fast nonlinear mean reversion," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1994-2031.
    9. Youngha Cho & Soosung Hwang & Steve Satchell, 2012. "The Optimal Mortgage Loan Portfolio in UK Regional Residential Real Estate," The Journal of Real Estate Finance and Economics, Springer, vol. 45(3), pages 645-677, October.
    10. Alexander Veretennikov, 2023. "Polynomial Recurrence for SDEs with a Gradient-Type Drift, Revisited," Mathematics, MDPI, vol. 11(14), pages 1-16, July.
    11. Li, Zhongfei & Yao, Jing & Li, Duan, 2010. "Behavior patterns of investment strategies under Roy's safety-first principle," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(2), pages 167-179, May.
    12. repec:pri:metric:wp051_2013_hansen_scheinkman_stochastic-compounding-and-uncertain-valuati is not listed on IDEAS
    13. Bal'azs Gerencs'er & Mikl'os R'asonyi, 2020. "Invariant measures for multidimensional fractional stochastic volatility models," Papers 2002.04832, arXiv.org, revised Aug 2021.
    14. Kulik, Alexei & Pavlyukevich, Ilya, 2021. "Moment bounds for dissipative semimartingales with heavy jumps," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 274-308.
    15. Haley, M. Ryan & McGee, M. Kevin, 2011. ""KLICing" there and back again: Portfolio selection using the empirical likelihood divergence and Hellinger distance," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 341-352, March.
    16. Masayuki Uchida & Nakahiro Yoshida, 2001. "Information Criteria in Model Selection for Mixing Processes," Statistical Inference for Stochastic Processes, Springer, vol. 4(1), pages 73-98, January.
    17. Kanaya, Shin, 2017. "Convergence Rates Of Sums Of Α-Mixing Triangular Arrays: With An Application To Nonparametric Drift Function Estimation Of Continuous-Time Processes," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1121-1153, October.
    18. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    19. Govindaraj, Suresh, 2005. "Hypothesis testing for diffusion processes with continuous observations: Direct computation of large deviation results for error probabilities," Finance Research Letters, Elsevier, vol. 2(4), pages 234-247, December.
    20. Chen, Xiaohong & Hansen, Lars Peter & Carrasco, Marine, 2010. "Nonlinearity and temporal dependence," Journal of Econometrics, Elsevier, vol. 155(2), pages 155-169, April.
    21. E. Diecidue & J. van de Ven & U. Weitzel, 2008. "Shareholders’ expectations, aspiration levels, and mergers," Working Papers 08-06, Utrecht School of Economics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1602.02192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.