IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1512.06295.html
   My bibliography  Save this paper

Optimization problem for a portfolio with an illiquid asset: Lie group analysis

Author

Listed:
  • Ljudmila A. Bordag
  • Ivan P. Yamshchikov

Abstract

Management of a portfolio that includes an illiquid asset is an important problem of modern mathematical finance. One of the ways to model illiquidity among others is to build an optimization problem and assume that one of the assets in a portfolio can not be sold until a certain finite, infinite or random moment of time. This approach arises a certain amount of models that are actively studied at the moment. Working in the Merton's optimal consumption framework with continuous time we consider an optimization problem for a portfolio with an illiquid, a risky and a risk-free asset. Our goal in this paper is to carry out a complete Lie group analysis of PDEs describing value function and investment and consumption strategies for a portfolio with an illiquid asset that is sold in an exogenous random moment of time with a prescribed liquidation time distribution. The problem of such type leads to three dimensional nonlinear Hamilton-Jacobi-Bellman (HJB) equations. Such equations are not only tedious for analytical methods but are also quite challenging form a numeric point of view. To reduce the three-dimensional problem to a two-dimensional one or even to an ODE one usually uses some substitutions, yet the methods used to find such substitutions are rarely discussed by the authors. We find the admitted Lie algebra for a broad class of liquidation time distributions in cases of HARA and log utility functions and formulate corresponding theorems for all these cases. We use found Lie algebras to obtain reductions of the studied equations. Several of similar substitutions were used in other papers before whereas others are new to our knowledge. This method gives us the possibility to provide a complete set of non-equivalent substitutions and reduced equations.

Suggested Citation

  • Ljudmila A. Bordag & Ivan P. Yamshchikov, 2015. "Optimization problem for a portfolio with an illiquid asset: Lie group analysis," Papers 1512.06295, arXiv.org.
  • Handle: RePEc:arx:papers:1512.06295
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1512.06295
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. L. A. Bordag & I. P. Yamshchikov & D. Zhelezov, 2015. "Portfolio optimization in the case of an asset with a given liquidation time distribution," Post-Print hal-01186961, HAL.
    2. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    3. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    4. Darrell Duffie & Thaleia Zariphopoulou, 1993. "Optimal Investment With Undiversifiable Income Risk," Mathematical Finance, Wiley Blackwell, vol. 3(2), pages 135-148, April.
    5. Duffie, Darrell & Fleming, Wendell & Soner, H. Mete & Zariphopoulou, Thaleia, 1997. "Hedging in incomplete markets with HARA utility," Journal of Economic Dynamics and Control, Elsevier, vol. 21(4-5), pages 753-782, May.
    6. Schwartz, Eduardo S & Tebaldi, Claudio, 2004. "Illiquid Assets and Optimal Portfolio Choice," University of California at Los Angeles, Anderson Graduate School of Management qt7q65t12x, Anderson Graduate School of Management, UCLA.
    7. Thaleia Zariphopoulou, 1999. "Optimal investment and consumption models with non-linear stock dynamics," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 50(2), pages 271-296, October.
    8. Munk, Claus, 2000. "Optimal consumption/investment policies with undiversifiable income risk and liquidity constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 24(9), pages 1315-1343, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. L. A. Bordag & I. P. Yamshchikov & D. Zhelezov, 2015. "Portfolio optimization in the case of an asset with a given liquidation time distribution," Post-Print hal-01186961, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ljudmila A. Bordag & Ivan P. Yamshchikov & Dmitry Zhelezov, 2014. "Portfolio optimization in the case of an asset with a given liquidation time distribution," Papers 1407.3154, arXiv.org.
    2. L. A. Bordag & I. P. Yamshchikov & D. Zhelezov, 2015. "Portfolio optimization in the case of an asset with a given liquidation time distribution," Post-Print hal-01186961, HAL.
    3. Henderson, Vicky, 2005. "Explicit solutions to an optimal portfolio choice problem with stochastic income," Journal of Economic Dynamics and Control, Elsevier, vol. 29(7), pages 1237-1266, July.
    4. Morten Tolver Kronborg, 2014. "Optimal Consumption and Investment with Labor Income and European/American Capital Guarantee," Risks, MDPI, vol. 2(2), pages 1-24, May.
    5. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    6. John H. Cochrane, 2014. "A Mean-Variance Benchmark for Intertemporal Portfolio Theory," Journal of Finance, American Finance Association, vol. 69(1), pages 1-49, February.
    7. Farhi, Emmanuel & Panageas, Stavros, 2007. "Saving and investing for early retirement: A theoretical analysis," Journal of Financial Economics, Elsevier, vol. 83(1), pages 87-121, January.
    8. Adriana Ocejo, 2018. "Explicit solutions to utility maximization problems in a regime-switching market model via Laplace transforms," Papers 1804.08442, arXiv.org.
    9. Marina Di Giacinto & Salvatore Federico & Fausto Gozzi, 2011. "Pension funds with a minimum guarantee: a stochastic control approach," Finance and Stochastics, Springer, vol. 15(2), pages 297-342, June.
    10. Claus Munk, 1997. "Optimal Consumption/Investment Policies with Undiversifiable Income Risk and Borrowing Constraints," Finance 9712003, University Library of Munich, Germany.
    11. Jianmin Shi, 2023. "Dynamic asset allocation with multiple regime‐switching markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1741-1755, April.
    12. Munk, Claus & Sørensen, Carsten, 2010. "Dynamic asset allocation with stochastic income and interest rates," Journal of Financial Economics, Elsevier, vol. 96(3), pages 433-462, June.
    13. Munk, Claus, 2000. "Optimal consumption/investment policies with undiversifiable income risk and liquidity constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 24(9), pages 1315-1343, August.
    14. Andrew Papanicolaou, 2018. "Backward SDEs for Control with Partial Information," Papers 1807.08222, arXiv.org.
    15. Letendre, Marc-Andre & Smith, Gregor W., 2001. "Precautionary saving and portfolio allocation: DP by GMM," Journal of Monetary Economics, Elsevier, vol. 48(1), pages 197-215, August.
    16. Regis Houssou & Olivier Besson, 2010. "Indifference of Defaultable Bonds with Stochastic Intensity models," Papers 1003.4118, arXiv.org.
    17. Christoph Belak & An Chen & Carla Mereu & Robert Stelzer, 2014. "Optimal investment with time-varying stochastic endowments," Papers 1406.6245, arXiv.org, revised Feb 2022.
    18. Roche, Hervé & Tompaidis, Stathis & Yang, Chunyu, 2013. "Why does junior put all his eggs in one basket? A potential rational explanation for holding concentrated portfolios," Journal of Financial Economics, Elsevier, vol. 109(3), pages 775-796.
    19. Michael Ludkovski & Hyekyung Min, 2010. "Illiquidity Effects in Optimal Consumption-Investment Problems," Papers 1004.1489, arXiv.org, revised Sep 2010.
    20. Shican Liu & Yanli Zhou & Benchawan Wiwatanapataphee & Yonghong Wu & Xiangyu Ge, 2018. "The Study of Utility Valuation of Single-Name Credit Derivatives with the Fast-Scale Stochastic Volatility Correction," Sustainability, MDPI, vol. 10(4), pages 1-21, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1512.06295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.