IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1511.05303.html
   My bibliography  Save this paper

An invitation to coupling and copulas: with applications to multisensory modeling

Author

Listed:
  • Hans Colonius

Abstract

This paper presents an introduction to the stochastic concepts of \emph{coupling} and \emph{copula}. Coupling means the construction of a joint distribution of two or more random variables that need not be defined on one and the same probability space, whereas a copula is a function that joins a multivariate distribution to its one-dimensional margins. Their role in stochastic modeling is illustrated by examples from multisensory perception. Pointers to more advanced and recent treatments are provided.

Suggested Citation

  • Hans Colonius, 2015. "An invitation to coupling and copulas: with applications to multisensory modeling," Papers 1511.05303, arXiv.org.
  • Handle: RePEc:arx:papers:1511.05303
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1511.05303
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pfeifer, Dietmar & Nešlehová, Johana, 2004. "Modeling and Generating Dependent Risk Processes for IRM and DFA," ASTIN Bulletin, Cambridge University Press, vol. 34(2), pages 333-360, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    2. Ansari Jonathan & Rockel Marcus, 2024. "Dependence properties of bivariate copula families," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-36.
    3. Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.
    4. Chavez-Demoulin, V. & Embrechts, P. & Neslehova, J., 2006. "Quantitative models for operational risk: Extremes, dependence and aggregation," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2635-2658, October.
    5. Bäuerle, Nicole & Blatter, Anja, 2011. "Optimal control and dependence modeling of insurance portfolios with Lévy dynamics," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 398-405, May.
    6. Jianxi Su & Edward Furman, 2016. "A form of multivariate Pareto distribution with applications to financial risk measurement," Papers 1607.04737, arXiv.org.
    7. Anastasiadis, Simon & Chukova, Stefanka, 2012. "Multivariate insurance models: An overview," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 222-227.
    8. Martin Eling & Denis Toplek, 2009. "Modeling and Management of Nonlinear Dependencies–Copulas in Dynamic Financial Analysis," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 651-681, September.
    9. Asimit, Alexandru V. & Furman, Edward & Vernic, Raluca, 2010. "On a multivariate Pareto distribution," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 308-316, April.
    10. Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.
    11. Xu, Chi & Zheng, Chunling & Wang, Donghua & Ji, Jingru & Wang, Nuan, 2019. "Double correlation model for operational risk: Evidence from Chinese commercial banks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 327-339.
    12. Juliana Schulz & Christian Genest & Mhamed Mesfioui, 2021. "A multivariate Poisson model based on comonotonic shocks," International Statistical Review, International Statistical Institute, vol. 89(2), pages 323-348, August.
    13. Ramírez-Cobo, Pepa & Carrizosa, Emilio & Lillo, Rosa E., 2021. "Analysis of an aggregate loss model in a Markov renewal regime," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    14. Veraart, Almut E.D., 2019. "Modeling, simulation and inference for multivariate time series of counts using trawl processes," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 110-129.
    15. Kokonendji, Célestin C. & Puig, Pedro, 2018. "Fisher dispersion index for multivariate count distributions: A review and a new proposal," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 180-193.
    16. Lefèvre Claude & Picard Philippe, 2023. "Abel-Gontcharoff polynomials, parking trajectories and ruin probabilities," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-17.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1511.05303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.