IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1509.05638.html
   My bibliography  Save this paper

Stochastic Optimal Growth Model with Risk Sensitive Preferences

Author

Listed:
  • Nicole Bauerle
  • Anna Ja'skiewicz

Abstract

This paper studies a one-sector optimal growth model with i.i.d. productivity shocks that are allowed to be unbounded. The utility function is assumed to be non-negative and unbounded from above. The novel feature in our framework is that the agent has risk sensitive preferences in the sense of Hansen and Sargent (1995). Under mild assumptions imposed on the productivity and utility functions we prove that the maximal discounted non-expected utility in the infinite time horizon satisfies the optimality equation and the agent possesses a stationary optimal policy. A new point used in our analysis is an inequality for the so-called associated random variables. We also establish the Euler equation that incorporates the solution to the optimality equation.

Suggested Citation

  • Nicole Bauerle & Anna Ja'skiewicz, 2015. "Stochastic Optimal Growth Model with Risk Sensitive Preferences," Papers 1509.05638, arXiv.org.
  • Handle: RePEc:arx:papers:1509.05638
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1509.05638
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Le Van, Cuong & Vailakis, Yiannis, 2005. "Recursive utility and optimal growth with bounded or unbounded returns," Journal of Economic Theory, Elsevier, vol. 123(2), pages 187-209, August.
    2. Le Van, Cuong & Morhaim, Lisa, 2002. "Optimal Growth Models with Bounded or Unbounded Returns: A Unifying Approach," Journal of Economic Theory, Elsevier, vol. 105(1), pages 158-187, July.
    3. Zhang, Yuzhe, 2007. "Stochastic optimal growth with a non-compact state space," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 115-129, February.
    4. Larry G. Epstein & Stanley E. Zin, 2013. "Substitution, risk aversion and the temporal behavior of consumption and asset returns: A theoretical framework," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 12, pages 207-239, World Scientific Publishing Co. Pte. Ltd..
    5. Josef Haunschmied & Vladimir M. Veliov & Stefan Wrzaczek (ed.), 2014. "Dynamic Games in Economics," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-642-54248-0, March.
    6. William A. Brock & Leonard J. Mirman, 2001. "Optimal Economic Growth And Uncertainty: The Discounted Case," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 1, pages 3-37, Edward Elgar Publishing.
    7. Janusz Matkowski & Andrzej Nowak, 2011. "On discounted dynamic programming with unbounded returns," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 46(3), pages 455-474, April.
    8. TallariniJr., Thomas D., 2000. "Risk-sensitive real business cycles," Journal of Monetary Economics, Elsevier, vol. 45(3), pages 507-532, June.
    9. Anderson, Evan W., 2005. "The dynamics of risk-sensitive allocations," Journal of Economic Theory, Elsevier, vol. 125(2), pages 93-150, December.
    10. Kamihigashi, Takashi, 2007. "Stochastic optimal growth with bounded or unbounded utility and with bounded or unbounded shocks," Journal of Mathematical Economics, Elsevier, vol. 43(3-4), pages 477-500, April.
    11. Anna Jaśkiewicz & Andrzej Nowak, 2011. "Stochastic Games with Unbounded Payoffs: Applications to Robust Control in Economics," Dynamic Games and Applications, Springer, vol. 1(2), pages 253-279, June.
    12. Łukasz Balbus & Anna Jaśkiewicz & Andrzej S. Nowak, 2015. "Existence of Stationary Markov Perfect Equilibria in Stochastic Altruistic Growth Economies," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 295-315, April.
    13. , & ,, 2014. "Stochastic stability in monotone economies," Theoretical Economics, Econometric Society, vol. 9(2), May.
    14. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, April.
    15. Łukasz Balbus & Anna Jaśkiewicz & Andrzej S. Nowak, 2020. "Markov perfect equilibria in a dynamic decision model with quasi-hyperbolic discounting," Annals of Operations Research, Springer, vol. 287(2), pages 573-591, April.
    16. Anderson, Evan W. & Hansen, Lars Peter & Sargent, Thomas J., 2012. "Small noise methods for risk-sensitive/robust economies," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 468-500.
    17. Alvarez, Fernando & Stokey, Nancy L., 1998. "Dynamic Programming with Homogeneous Functions," Journal of Economic Theory, Elsevier, vol. 82(1), pages 167-189, September.
    18. Boud, John III, 1990. "Recursive utility and the Ramsey problem," Journal of Economic Theory, Elsevier, vol. 50(2), pages 326-345, April.
    19. Donald M. Topkis, 1978. "Minimizing a Submodular Function on a Lattice," Operations Research, INFORMS, vol. 26(2), pages 305-321, April.
    20. Kazuo Nishimura & John Stachurski, 2012. "Stability of Stochastic Optimal Growth Models: A New Approach," Springer Books, in: John Stachurski & Alain Venditti & Makoto Yano (ed.), Nonlinear Dynamics in Equilibrium Models, edition 127, chapter 0, pages 289-307, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bäuerle, Nicole & Jaśkiewicz, Anna, 2018. "Stochastic optimal growth model with risk sensitive preferences," Journal of Economic Theory, Elsevier, vol. 173(C), pages 181-200.
    2. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, April.
    3. Rincón-Zapatero, Juan Pablo, 2022. "Existence and uniqueness of solutions to the Bellman equation in stochastic dynamic programming," UC3M Working papers. Economics 35342, Universidad Carlos III de Madrid. Departamento de Economía.
    4. Bloise, G. & Van, C. Le & Vailakis, Y., 2024. "An approximation approach to dynamic programming with unbounded returns," Journal of Mathematical Economics, Elsevier, vol. 111(C).
    5. Cai, Yiyong & Kamihigashi, Takashi & Stachurski, John, 2014. "Stochastic optimal growth with risky labor supply," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 167-176.
    6. Takashi Kamihigashi & John Stachurski, 2014. "Stability Analysis for Random Dynamical Systems in Economics," Discussion Paper Series DP2014-35, Research Institute for Economics & Business Administration, Kobe University.
    7. Ali Khan, M. & Zhang, Zhixiang, 2023. "The random two-sector RSS model: On discounted optimal growth without Ramsey-Euler conditions," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    8. Tapan Mitra & Santanu Roy, 2023. "Stochastic growth, conservation of capital and convergence to a positive steady state," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 76(1), pages 311-351, July.
    9. Bloise, Gaetano & Vailakis, Yiannis, 2018. "Convex dynamic programming with (bounded) recursive utility," Journal of Economic Theory, Elsevier, vol. 173(C), pages 118-141.
    10. Gaetano Bloise & Cuong Le Van & Yiannis Vailakis, 2024. "Do not Blame Bellman: It Is Koopmans' Fault," Econometrica, Econometric Society, vol. 92(1), pages 111-140, January.
    11. Juan Pablo Rinc'on-Zapatero, 2019. "Existence and Uniqueness of Solutions to the Stochastic Bellman Equation with Unbounded Shock," Papers 1907.07343, arXiv.org.
    12. Philippe Bich & Jean-Pierre Drugeon & Lisa Morhaim, 2015. "On Aggregators and Dynamic Programming," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01169552, HAL.
    13. Philippe Bich & Jean-Pierre Drugeon & Lisa Morhaim, 2018. "On temporal aggregators and dynamic programming," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(3), pages 787-817, October.
    14. Philippe Bich & Jean-Pierre Drugeon & Lisa Morhaim, 2015. "On Aggregators and Dynamic Programming," Post-Print halshs-01169552, HAL.
    15. Kamihigashi, Takashi & Stachurski, John, 2016. "Seeking ergodicity in dynamic economies," Journal of Economic Theory, Elsevier, vol. 163(C), pages 900-924.
    16. Philippe Bich & Jean-Pierre Drugeon & Lisa Morhaim, 2018. "On Temporal Aggregators and Dynamic Programming," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01437496, HAL.
    17. Goswami, Anindya & Rana, Nimit & Siu, Tak Kuen, 2022. "Regime switching optimal growth model with risk sensitive preferences," Journal of Mathematical Economics, Elsevier, vol. 101(C).
    18. Takashi Kamihigashi & John Stachurski, 2011. "Stability of Stationary Distributions in Monotone Economies," ANU Working Papers in Economics and Econometrics 2011-561, Australian National University, College of Business and Economics, School of Economics.
    19. Thomas J. Sargent & John Stachurski, 2024. "Dynamic Programming: Finite States," Papers 2401.10473, arXiv.org.
    20. Philippe Bich & Jean-Pierre Drugeon & Lisa Morhaim, 2015. "On Aggregators and Dynamic Programming," Documents de travail du Centre d'Economie de la Sorbonne 15053, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1509.05638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.