IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1502.05743.html
   My bibliography  Save this paper

The existence of optimal bang-bang controls for GMxB contracts

Author

Listed:
  • Parsiad Azimzadeh
  • Peter A. Forsyth

Abstract

A large collection of financial contracts offering guaranteed minimum benefits are often posed as control problems, in which at any point in the solution domain, a control is able to take any one of an uncountable number of values from the admissible set. Often, such contracts specify that the holder exert control at a finite number of deterministic times. The existence of an optimal bang-bang control, an optimal control taking on only a finite subset of values from the admissible set, is a common assumption in the literature. In this case, the numerical complexity of searching for an optimal control is considerably reduced. However, no rigorous treatment as to when an optimal bang-bang control exists is present in the literature. We provide the reader with a bang-bang principle from which the existence of such a control can be established for contracts satisfying some simple conditions. The bang-bang principle relies on the convexity and monotonicity of the solution and is developed using basic results in convex analysis and parabolic partial differential equations. We show that a guaranteed lifelong withdrawal benefit (GLWB) contract admits an optimal bang-bang control. In particular, we find that the holder of a GLWB can maximize a writer's losses by only ever performing nonwithdrawal, withdrawal at exactly the contract rate, or full surrender. We demonstrate that the related guaranteed minimum withdrawal benefit contract is not convexity preserving, and hence does not satisfy the bang-bang principle other than in certain degenerate cases.

Suggested Citation

  • Parsiad Azimzadeh & Peter A. Forsyth, 2015. "The existence of optimal bang-bang controls for GMxB contracts," Papers 1502.05743, arXiv.org, revised Nov 2015.
  • Handle: RePEc:arx:papers:1502.05743
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1502.05743
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bergman, Yaacov Z & Grundy, Bruce D & Wiener, Zvi, 1996. "General Properties of Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1573-1610, December.
    2. Bacinello, Anna Rita & Millossovich, Pietro & Olivieri, Annamaria & Pitacco, Ermanno, 2011. "Variable annuities: A unifying valuation approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 285-297.
    3. Gabriella Piscopo & Steven Haberman, 2011. "The Valuation of Guaranteed Lifelong Withdrawal Benefit Options in Variable Annuity Contracts and the Impact of Mortality Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(1), pages 59-76.
    4. Milevsky, Moshe A. & Salisbury, Thomas S., 2006. "Financial valuation of guaranteed minimum withdrawal benefits," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 21-38, February.
    5. Huang, Yao Tung & Kwok, Yue Kuen, 2014. "Analysis of optimal dynamic withdrawal policies in withdrawal guarantee products," Journal of Economic Dynamics and Control, Elsevier, vol. 45(C), pages 19-43.
    6. Yaacov Z. Bergman & Bruce D. Grundy & Zvi Wiener, "undated". "General Properties of Option Prices (Revision of 11-95) (Reprint 058)," Rodney L. White Center for Financial Research Working Papers 1-96, Wharton School Rodney L. White Center for Financial Research.
    7. Barbara A. Butrica & Howard M. Iams & Karen E. Smith & Eric J. Toder, 2009. "The Disappearing Defined Benefit Pension and its Potential Impact on the Retirement Incomes of Boomers," Working Papers, Center for Retirement Research at Boston College wp2009-2, Center for Retirement Research.
    8. Ngai, Andrew & Sherris, Michael, 2011. "Longevity risk management for life and variable annuities: The effectiveness of static hedging using longevity bonds and derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 100-114, July.
    9. Bauer, Daniel & Kling, Alexander & Russ, Jochen, 2008. "A Universal Pricing Framework for Guaranteed Minimum Benefits in Variable Annuities 1," ASTIN Bulletin, Cambridge University Press, vol. 38(2), pages 621-651, November.
    10. Chen, Z. & Vetzal, K. & Forsyth, P.A., 2008. "The effect of modelling parameters on the value of GMWB guarantees," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 165-173, August.
    11. Forsyth, Peter & Vetzal, Kenneth, 2014. "An optimal stochastic control framework for determining the cost of hedging of variable annuities," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 29-53.
    12. Min Dai & Yue Kuen Kwok & Jianping Zong, 2008. "Guaranteed Minimum Withdrawal Benefit In Variable Annuities," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 595-611, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parsiad Azimzadeh & Peter A. Forsyth, 2015. "Weakly chained matrices, policy iteration, and impulse control," Papers 1510.03928, arXiv.org, revised Sep 2017.
    2. Seyed Amir Hejazi & Kenneth R. Jackson, 2016. "A Neural Network Approach to Efficient Valuation of Large Portfolios of Variable Annuities," Papers 1606.07831, arXiv.org.
    3. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    4. Yaowen Lu & Duy-Minh Dang, 2023. "A semi-Lagrangian $\epsilon$-monotone Fourier method for continuous withdrawal GMWBs under jump-diffusion with stochastic interest rate," Papers 2310.00606, arXiv.org.
    5. Zhiyi Shen & Chengguo Weng, 2019. "A Backward Simulation Method for Stochastic Optimal Control Problems," Papers 1901.06715, arXiv.org.
    6. Yao Tung Huang & Yue Kuen Kwok, 2016. "Regression-based Monte Carlo methods for stochastic control models: variable annuities with lifelong guarantees," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 905-928, June.
    7. Bacinello, Anna Rita & Maggistro, Rosario & Zoccolan, Ivan, 2024. "Risk-neutral valuation of GLWB riders in variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 1-14.
    8. Zhiyi Shen, 2022. "Out-of-Model Adjustments of Variable Annuities," Papers 2208.12838, arXiv.org.
    9. Fontana, Claudio & Rotondi, Francesco, 2023. "Valuation of general GMWB annuities in a low interest rate environment," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 142-167.
    10. Hejazi, Seyed Amir & Jackson, Kenneth R., 2016. "A neural network approach to efficient valuation of large portfolios of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 169-181.
    11. Jin Sun & Pavel V. Shevchenko & Man Chung Fung, 2018. "The Impact of Management Fees on the Pricing of Variable Annuity Guarantees," Risks, MDPI, vol. 6(3), pages 1-20, September.
    12. Claudio Fontana & Francesco Rotondi, 2022. "Valuation of general GMWB annuities in a low interest rate environment," Papers 2208.10183, arXiv.org, revised Aug 2023.
    13. Pavel V. Shevchenko & Xiaolin Luo, 2016. "A Unified Pricing of Variable Annuity Guarantees under the Optimal Stochastic Control Framework," Risks, MDPI, vol. 4(3), pages 1-31, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao Tung Huang & Yue Kuen Kwok, 2016. "Regression-based Monte Carlo methods for stochastic control models: variable annuities with lifelong guarantees," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 905-928, June.
    2. Forsyth, Peter & Vetzal, Kenneth, 2014. "An optimal stochastic control framework for determining the cost of hedging of variable annuities," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 29-53.
    3. Huang, H. & Milevsky, M.A. & Salisbury, T.S., 2014. "Optimal initiation of a GLWB in a variable annuity: No Arbitrage approach," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 102-111.
    4. Ignatieva, Katja & Song, Andrew & Ziveyi, Jonathan, 2016. "Pricing and hedging of guaranteed minimum benefits under regime-switching and stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 286-300.
    5. Shevchenko, Pavel V. & Luo, Xiaolin, 2017. "Valuation of variable annuities with Guaranteed Minimum Withdrawal Benefit under stochastic interest rate," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 104-117.
    6. Hsieh, Ming-hua & Wang, Jennifer L. & Chiu, Yu-Fen & Chen, Yen-Chih, 2018. "Valuation of variable long-term care Annuities with Guaranteed Lifetime Withdrawal Benefits: A variance reduction approach," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 246-254.
    7. Feng, Runhuan & Yi, Bingji, 2019. "Quantitative modeling of risk management strategies: Stochastic reserving and hedging of variable annuity guaranteed benefits," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 60-73.
    8. Pavel V. Shevchenko & Xiaolin Luo, 2016. "A unified pricing of variable annuity guarantees under the optimal stochastic control framework," Papers 1605.00339, arXiv.org.
    9. Yaowen Lu & Duy-Minh Dang, 2023. "A semi-Lagrangian $\epsilon$-monotone Fourier method for continuous withdrawal GMWBs under jump-diffusion with stochastic interest rate," Papers 2310.00606, arXiv.org.
    10. Pavel V. Shevchenko & Xiaolin Luo, 2016. "A Unified Pricing of Variable Annuity Guarantees under the Optimal Stochastic Control Framework," Risks, MDPI, vol. 4(3), pages 1-31, July.
    11. Bacinello, Anna Rita & Maggistro, Rosario & Zoccolan, Ivan, 2024. "Risk-neutral valuation of GLWB riders in variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 1-14.
    12. Bernard, Carole & Kwak, Minsuk, 2016. "Semi-static hedging of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 173-186.
    13. Wang, Gu & Zou, Bin, 2021. "Optimal fee structure of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 587-601.
    14. Claudio Fontana & Francesco Rotondi, 2022. "Valuation of general GMWB annuities in a low interest rate environment," Papers 2208.10183, arXiv.org, revised Aug 2023.
    15. Jin Sun & Pavel V. Shevchenko & Man Chung Fung, 2017. "A note on the impact of management fees on the pricing of variable annuity guarantees," Papers 1705.03787, arXiv.org, revised May 2017.
    16. Jin Sun & Pavel V. Shevchenko & Man Chung Fung, 2018. "The Impact of Management Fees on the Pricing of Variable Annuity Guarantees," Risks, MDPI, vol. 6(3), pages 1-20, September.
    17. Nitu Sharma & S. Dharmaraja & Viswanathan Arunachalam, 2021. "A Time Series Framework for Pricing Guaranteed Lifelong Withdrawal Benefit," Computational Economics, Springer;Society for Computational Economics, vol. 58(4), pages 1225-1261, December.
    18. Pavel V. Shevchenko & Xiaolin Luo, 2016. "Valuation of Variable Annuities with Guaranteed Minimum Withdrawal Benefit under Stochastic Interest Rate," Papers 1602.03238, arXiv.org, revised Jan 2017.
    19. Moenig, Thorsten, 2021. "Variable annuities: Market incompleteness and policyholder behavior," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 63-78.
    20. Dong, Bing & Xu, Wei & Sevic, Aleksandar & Sevic, Zeljko, 2020. "Efficient willow tree method for variable annuities valuation and risk management☆," International Review of Financial Analysis, Elsevier, vol. 68(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1502.05743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.