IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1410.7316.html
   My bibliography  Save this paper

Randomisation and recursion methods for mixed-exponential Levy models, with financial applications

Author

Listed:
  • Aleksandar Mijatovic
  • Martijn Pistorius
  • Johannes Stolte

Abstract

We develop a new Monte Carlo variance reduction method to estimate the expectation of two commonly encountered path-dependent functionals: first-passage times and occupation times of sets. The method is based on a recursive approximation of the first-passage time probability and expected occupation time of sets of a Levy bridge process that relies in part on a randomisation of the time parameter. We establish this recursion for general Levy processes and derive its explicit form for mixed-exponential jump-diffusions, a dense subclass (in the sense of weak approximation) of Levy processes, which includes Brownian motion with drift, Kou's double-exponential model and hyper-exponential jump-diffusion models. We present a highly accurate numerical realisation and derive error estimates. By way of illustration the method is applied to the valuation of range accruals and barrier options under exponential Levy models and Bates-type stochastic volatility models with exponential jumps. Compared with standard Monte Carlo methods, we find that the method is significantly more efficient.

Suggested Citation

  • Aleksandar Mijatovic & Martijn Pistorius & Johannes Stolte, 2014. "Randomisation and recursion methods for mixed-exponential Levy models, with financial applications," Papers 1410.7316, arXiv.org.
  • Handle: RePEc:arx:papers:1410.7316
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1410.7316
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ferreiro-Castilla, A. & Kyprianou, A.E. & Scheichl, R. & Suryanarayana, G., 2014. "Multilevel Monte Carlo simulation for Lévy processes based on the Wiener–Hopf factorisation," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 985-1010.
    2. Avram, Florin & Chan, Terence & Usabel, Miguel, 0. "On the valuation of constant barrier options under spectrally one-sided exponential Lévy models and Carr's approximation for American puts," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 75-107, July.
    3. Ning Cai & S. G. Kou, 2011. "Option Pricing Under a Mixed-Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 57(11), pages 2067-2081, November.
    4. Marc Jeannin & Martijn Pistorius, 2010. "A transform approach to compute prices and Greeks of barrier options driven by a class of Levy processes," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 629-644.
    5. Carr, Peter, 1998. "Randomization and the American Put," The Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 597-626.
    6. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    7. Gobet, Emmanuel, 2000. "Weak approximation of killed diffusion using Euler schemes," Stochastic Processes and their Applications, Elsevier, vol. 87(2), pages 167-197, June.
    8. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    9. Jos'e E. Figueroa-L'opez & Peter Tankov, 2012. "Small-time asymptotics of stopped L\'evy bridges and simulation schemes with controlled bias," Papers 1203.2355, arXiv.org, revised Jul 2014.
    10. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    11. Asmussen, Søren & Avram, Florin & Pistorius, Martijn R., 2004. "Russian and American put options under exponential phase-type Lévy models," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 79-111, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ning Cai & S. G. Kou, 2011. "Option Pricing Under a Mixed-Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 57(11), pages 2067-2081, November.
    2. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    3. Markus Leippold & Nikola Vasiljević, 2020. "Option-Implied Intrahorizon Value at Risk," Management Science, INFORMS, vol. 66(1), pages 397-414, January.
    4. Ning Cai & Xuewei Yang, 2021. "A Computational Approach to First Passage Problems of Reflected Hyperexponential Jump Diffusion Processes," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 216-229, January.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. Jin-Yu Zhang & Wen-Bo Wu & Yong Li & Zhu-Sheng Lou, 2021. "Pricing Exotic Option Under Jump-Diffusion Models by the Quadrature Method," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 867-884, October.
    7. Michael C. Fu & Bingqing Li & Guozhen Li & Rongwen Wu, 2017. "Option Pricing for a Jump-Diffusion Model with General Discrete Jump-Size Distributions," Management Science, INFORMS, vol. 63(11), pages 3961-3977, November.
    8. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    9. Walter Farkas & Ludovic Mathys & Nikola Vasiljevi'c, 2020. "Intra-Horizon Expected Shortfall and Risk Structure in Models with Jumps," Papers 2002.04675, arXiv.org, revised Jan 2021.
    10. Xindan Li & Dan Tang & Yongjin Wang & Xuewei Yang, 2014. "Optimal processing rate and buffer size of a jump-diffusion processing system," Annals of Operations Research, Springer, vol. 217(1), pages 319-335, June.
    11. Tim Siu-Tang Leung & Kazutoshi Yamazaki, 2010. "American Step-Up and Step-Down Default Swaps under Levy Models," Papers 1012.3234, arXiv.org, revised Sep 2012.
    12. Yu, Jianfeng & Xu, Weidong, 2016. "Pricing turbo warrants under mixed-exponential jump diffusion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 490-501.
    13. Peter Carr & John Crosby, 2010. "A class of Levy process models with almost exact calibration to both barrier and vanilla FX options," Quantitative Finance, Taylor & Francis Journals, vol. 10(10), pages 1115-1136.
    14. Walter Farkas & Ludovic Mathys, 2020. "Geometric Step Options with Jumps. Parity Relations, PIDEs, and Semi-Analytical Pricing," Papers 2002.09911, arXiv.org.
    15. Daniel Hackmann, 2017. "Analytic techniques for option pricing under a hyperexponential L\'{e}vy model," Papers 1705.05934, arXiv.org.
    16. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    17. Dilip B. Madan & Wim Schoutens & King Wang, 2017. "Measuring And Monitoring The Efficiency Of Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    18. Dario Alitab & Giacomo Bormetti & Fulvio Corsi & Adam A. Majewski, 2019. "A realized volatility approach to option pricing with continuous and jump variance components," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 639-664, December.
    19. Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2013. "Option pricing with discrete time jump processes," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2417-2445.
    20. Rehez Ahlip & Laurence A. F. Park & Ante Prodan, 2017. "Pricing currency options in the Heston/CIR double exponential jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1410.7316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.