On the valuation of constant barrier options under spectrally one-sided exponential Lévy models and Carr's approximation for American puts
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Carr, Peter, 1998.
"Randomization and the American Put,"
The Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 597-626.
- Peter Carr, 1996. "Randomization and the American Put," Finance 9610003, University Library of Munich, Germany.
- Neil Shephard & Ole E. Barndorff-Nielsen, 2000. "Modelling by Levy Processes for Financial Econometrics," Economics Series Working Papers 2000-W03, University of Oxford, Department of Economics.
- Peter Carr & Robert Jarrow & Ravi Myneni, 2008.
"Alternative Characterizations Of American Put Options,"
World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 5, pages 85-103,
World Scientific Publishing Co. Pte. Ltd..
- Peter Carr & Robert Jarrow & Ravi Myneni, 1992. "Alternative Characterizations Of American Put Options," Mathematical Finance, Wiley Blackwell, vol. 2(2), pages 87-106, April.
- Zhang, Xiaolan, 1995. "Formules quasi-explicites pour les options américaines dans un modèle de diffusion avec sauts," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 38(1), pages 151-161.
- Broadie, Mark & Detemple, Jerome, 1996.
"American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods,"
The Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-1250.
- Mark Broadie & Jérôme Detemple, 1994. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," CIRANO Working Papers 94s-07, CIRANO.
- Xiao Lan Zhang, 1997. "Numerical Analysis of American Option Pricing in a Jump-Diffusion Model," Mathematics of Operations Research, INFORMS, vol. 22(3), pages 668-690, August.
- Ju, Nengjiu, 1998. "Pricing an American Option by Approximating Its Early Exercise Boundary as a Multipiece Exponential Function," The Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 627-646.
- Gerber, Hans U. & Landry, Bruno, 1998. "On the discounted penalty at ruin in a jump-diffusion and the perpetual put option," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 263-276, July.
- S. D. Jacka, 1991. "Optimal Stopping and the American Put," Mathematical Finance, Wiley Blackwell, vol. 1(2), pages 1-14, April.
- Hans Gerber & Elias Shiu, 1998. "Pricing Perpetual Options for Jump Processes," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(3), pages 101-107.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pistorius, M. R., 2003. "On doubly reflected completely asymmetric Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 107(1), pages 131-143, September.
- Jean-Philippe Aguilar, 2021. "The value of power-related options under spectrally negative Lévy processes," Review of Derivatives Research, Springer, vol. 24(2), pages 173-196, July.
- Tim Siu-Tang Leung & Kazutoshi Yamazaki, 2010. "American Step-Up and Step-Down Default Swaps under Levy Models," Papers 1012.3234, arXiv.org, revised Sep 2012.
- Leippold, Markus & Vasiljević, Nikola, 2017.
"Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model,"
Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
- Markus LEIPPOLD & Nikola VASILJEVIC, 2015. "Pricing and Disentanglement of American Puts in the Hyper-Exponential Jump-Diffusion Model," Swiss Finance Institute Research Paper Series 15-08, Swiss Finance Institute, revised Mar 2015.
- Aleksandar Mijatovic & Martijn Pistorius & Johannes Stolte, 2014. "Randomisation and recursion methods for mixed-exponential Levy models, with financial applications," Papers 1410.7316, arXiv.org.
- Svetlana Boyarchenko & Sergei Levendorskii, 2005.
"American options: the EPV pricing model,"
Annals of Finance, Springer, vol. 1(3), pages 267-292, August.
- Svetlana Boyarchenko & Sergei Levendorskii, 2004. "American options: the EPV pricing model," Finance 0405024, University Library of Munich, Germany.
- Lin, X. Sheldon & Wang, Tao, 2009. "Pricing perpetual American catastrophe put options: A penalty function approach," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 287-295, April.
- Oleg Kudryavtsev & Sergei Levendorskiǐ, 2009. "Fast and accurate pricing of barrier options under Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 531-562, September.
- Jean-Philippe Aguilar, 2019. "The value of power-related options under spectrally negative L\'evy processes," Papers 1910.07971, arXiv.org, revised Jan 2021.
- Asmussen, Søren & Avram, Florin & Pistorius, Martijn R., 2004. "Russian and American put options under exponential phase-type Lévy models," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 79-111, January.
- Ning Cai & S. G. Kou, 2011. "Option Pricing Under a Mixed-Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 57(11), pages 2067-2081, November.
- Jorge Gonz'alez C'azares & Aleksandar Mijatovi'c, 2020. "Simulation of the drawdown and its duration in L\'{e}vy models via stick-breaking Gaussian approximation," Papers 2011.06618, arXiv.org, revised Mar 2021.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
- Manuel Moreno & Javier Navas, 2003.
"On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives,"
Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
- Manuel Moreno & Javier R. Navas, 2001. "On the robustness of least-squares Monte Carlo (LSM) for pricing American derivatives," Economics Working Papers 543, Department of Economics and Business, Universitat Pompeu Fabra.
- S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
- Minqiang Li, 2010.
"A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes,"
Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
- Li, Minqiang, 2009. "A Quasi-analytical Interpolation Method for Pricing American Options under General Multi-dimensional Diffusion Processes," MPRA Paper 17348, University Library of Munich, Germany.
- Gao, Bin & Huang, Jing-zhi & Subrahmanyam, Marti, 2000.
"The valuation of American barrier options using the decomposition technique,"
Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1783-1827, October.
- Marti G. Subrahmanyam & Bin Gao & Jing-zhi Huang, 1998. "The Valuation of American Barrier Options Using the Decomposition Technique," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-067, New York University, Leonard N. Stern School of Business-.
- Ruas, João Pedro & Dias, José Carlos & Vidal Nunes, João Pedro, 2013. "Pricing and static hedging of American-style options under the jump to default extended CEV model," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4059-4072.
- Song-Ping Zhu, 2006. "An exact and explicit solution for the valuation of American put options," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 229-242.
- Minqiang Li, 2010.
"Analytical approximations for the critical stock prices of American options: a performance comparison,"
Review of Derivatives Research, Springer, vol. 13(1), pages 75-99, April.
- Minqiang Li, Li, 2009. "Analytical Approximations for the Critical Stock Prices of American Options: A Performance Comparison," MPRA Paper 15018, University Library of Munich, Germany.
- D. J. Manuge & P. T. Kim, 2014. "A fast Fourier transform method for Mellin-type option pricing," Papers 1403.3756, arXiv.org, revised Mar 2014.
- B. Gao J. Huang, "undated". "The Valuation of American Barrier Options Using the Decomposition Technique," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-002, New York University, Leonard N. Stern School of Business-.
- Antonella Basso & Martina Nardon & Paolo Pianca, 2004. "A two-step simulation procedure to analyze the exercise features of American options," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 27(1), pages 35-56, August.
- João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
- In oon Kim & Bong-Gyu Jang & Kyeong Tae Kim, 2013. "A simple iterative method for the valuation of American options," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 885-895, May.
- Fabozzi, Frank J. & Paletta, Tommaso & Stanescu, Silvia & Tunaru, Radu, 2016. "An improved method for pricing and hedging long dated American options," European Journal of Operational Research, Elsevier, vol. 254(2), pages 656-666.
- Jun Cheng & Jin Zhang, 2012. "Analytical pricing of American options," Review of Derivatives Research, Springer, vol. 15(2), pages 157-192, July.
- Jérôme Detemple & Weidong Tian, 2002. "The Valuation of American Options for a Class of Diffusion Processes," Management Science, INFORMS, vol. 48(7), pages 917-937, July.
- Jérôme Detemple & Carlton Osakwe, 2000.
"The Valuation of Volatility Options,"
Review of Finance, European Finance Association, vol. 4(1), pages 21-50.
- Jérôme Detemple & Carlton Osakwe, 1999. "The Valuation of Volatility Options," CIRANO Working Papers 99s-43, CIRANO.
- Zhongkai Liu & Tao Pang, 2016. "An efficient grid lattice algorithm for pricing American-style options," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 5(1), pages 36-55.
- Chockalingam, Arun & Muthuraman, Kumar, 2015. "An approximate moving boundary method for American option pricing," European Journal of Operational Research, Elsevier, vol. 240(2), pages 431-438.
- Denis Veliu & Roberto De Marchis & Mario Marino & Antonio Luciano Martire, 2022. "An Alternative Numerical Scheme to Approximate the Early Exercise Boundary of American Options," Mathematics, MDPI, vol. 11(1), pages 1-12, December.
More about this item
Keywords
American options Perpetual approximation Spectrally negative exponential Lévy process;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:100:y::i:1-2:p:75-107. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.