IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1410.2976.html
   My bibliography  Save this paper

Arbitrage theory without a num\'eraire

Author

Listed:
  • Michael R. Tehranchi

Abstract

This note develops an arbitrage theory for a discrete-time market model without the assumption of the existence of a num\'eraire asset. Fundamental theorems of asset pricing are stated and proven in this context. The distinction between the notions of investment-consumption arbitrage and pure-investment arbitrage provide a discrete-time analogue of the distinction between the notions of absolute arbitrage and relative arbitrage in the continuous-time theory. Applications to the modelling of bubbles is discussed.

Suggested Citation

  • Michael R. Tehranchi, 2014. "Arbitrage theory without a num\'eraire," Papers 1410.2976, arXiv.org, revised Jul 2015.
  • Handle: RePEc:arx:papers:1410.2976
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1410.2976
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Carr & Travis Fisher & Johannes Ruf, 2014. "On the hedging of options on exploding exchange rates," Finance and Stochastics, Springer, vol. 18(1), pages 115-144, January.
    2. Constantinos Kardaras, 2012. "Market viability via absence of arbitrage of the first kind," Finance and Stochastics, Springer, vol. 16(4), pages 651-667, October.
    3. Yuri Kabanov, 2008. "In discrete time a local martingale is a martingale under an equivalent probability measure," Finance and Stochastics, Springer, vol. 12(3), pages 293-297, July.
    4. J. Jacod & A.N. Shiryaev, 1998. "Local martingales and the fundamental asset pricing theorems in the discrete-time case," Finance and Stochastics, Springer, vol. 2(3), pages 259-273.
    5. Bruno Bouchard & Marcel Nutz, 2013. "Arbitrage and duality in nondominated discrete-time models," Papers 1305.6008, arXiv.org, revised Mar 2015.
    6. Alexander Cox & David Hobson, 2005. "Local martingales, bubbles and option prices," Finance and Stochastics, Springer, vol. 9(4), pages 477-492, October.
    7. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bálint, Dániel Ágoston, 2022. "Characterisation of L0-boundedness for a general set of processes with no strictly positive element," Stochastic Processes and their Applications, Elsevier, vol. 147(C), pages 51-75.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Imkeller & Nicolas Perkowski, 2015. "The existence of dominating local martingale measures," Finance and Stochastics, Springer, vol. 19(4), pages 685-717, October.
    2. Eckhard Platen & Stefan Tappe, 2020. "The Fundamental Theorem of Asset Pricing for Self-Financing Portfolios," Research Paper Series 411, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Eckhard Platen & Stefan Tappe, 2020. "No arbitrage and multiplicative special semimartingales," Papers 2005.05575, arXiv.org, revised Sep 2022.
    4. David Criens, 2016. "Deterministic Criteria for the Absence and Existence of Arbitrage in Multi-Dimensional Diffusion Markets," Papers 1609.01621, arXiv.org, revised Dec 2017.
    5. Jarrow, Robert & Protter, Philip, 2012. "Discrete versus continuous time models: Local martingales and singular processes in asset pricing theory," Finance Research Letters, Elsevier, vol. 9(2), pages 58-62.
    6. Johannes Ruf, 2012. "Negative Call Prices," Papers 1204.1903, arXiv.org, revised Jan 2013.
    7. David Criens, 2018. "Deterministic Criteria For The Absence And Existence Of Arbitrage In Multi-Dimensional Diffusion Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-41, February.
    8. Johannes Muhle-Karbe & Marcel Nutz, 2018. "A risk-neutral equilibrium leading to uncertain volatility pricing," Finance and Stochastics, Springer, vol. 22(2), pages 281-295, April.
    9. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 19, July-Dece.
    10. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2009, January-A.
    11. Blanchard, Romain & Carassus, Laurence, 2020. "No-arbitrage with multiple-priors in discrete time," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6657-6688.
    12. Fisher, Travis & Pulido, Sergio & Ruf, Johannes, 2019. "Financial models with defaultable numéraires," LSE Research Online Documents on Economics 84973, London School of Economics and Political Science, LSE Library.
    13. Patrick Beissner, 2019. "Coherent-Price Systems and Uncertainty-Neutral Valuation," Risks, MDPI, vol. 7(3), pages 1-18, September.
    14. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    15. N. Azevedo & D. Pinheiro & S. Z. Xanthopoulos & A. N. Yannacopoulos, 2018. "Who would invest only in the risk-free asset?," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-14, September.
    16. A. Fiori Maccioni, 2011. "The risk neutral valuation paradox," Working Paper CRENoS 201112, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    17. David Hobson & Anthony Neuberger, 2016. "On the value of being American," Papers 1604.02269, arXiv.org.
    18. Travis Fisher & Sergio Pulido & Johannes Ruf, 2019. "Financial Models with Defaultable Numéraires," Post-Print hal-01240736, HAL.
    19. repec:uts:finphd:40 is not listed on IDEAS
    20. Martin Herdegen & Martin Schweizer, 2018. "Semi‐efficient valuations and put‐call parity," Mathematical Finance, Wiley Blackwell, vol. 28(4), pages 1061-1106, October.
    21. Gianluca Cassese, 2021. "Complete and competitive financial markets in a complex world," Finance and Stochastics, Springer, vol. 25(4), pages 659-688, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1410.2976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.