IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1407.1595.html
   My bibliography  Save this paper

Non-linear filtering and optimal investment under partial information for stochastic volatility models

Author

Listed:
  • Dalia Ibrahim

    (MAS, FiQuant)

  • Fr'ed'eric Abergel

    (MAS, FiQuant)

Abstract

This paper studies the question of filtering and maximizing terminal wealth from expected utility in a partially information stochastic volatility models. The special features is that the only information available to the investor is the one generated by the asset prices, and the unobservable processes will be modeled by a stochastic differential equations. Using the change of measure techniques, the partial observation context can be transformed into a full information context such that coefficients depend only on past history of observed prices (filters processes). Adapting the stochastic non-linear filtering, we show that under some assumptions on the model coefficients, the estimation of the filters depend on a priorimodels for the trend and the stochastic volatility. Moreover, these filters satisfy a stochastic partial differential equations named "Kushner-Stratonovich equations". Using the martingale duality approach in this partially observed incomplete model, we can characterize the value function and the optimal portfolio. The main result here is that the dual value function associated to the martingale approach can be expressed, via the dynamic programmingapproach, in terms of the solution to a semilinear partial differential equation. We illustrate our results with some examples of stochastic volatility models popular in the financial literature.

Suggested Citation

  • Dalia Ibrahim & Fr'ed'eric Abergel, 2014. "Non-linear filtering and optimal investment under partial information for stochastic volatility models," Papers 1407.1595, arXiv.org, revised Jul 2015.
  • Handle: RePEc:arx:papers:1407.1595
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1407.1595
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lakner, Peter, 1998. "Optimal trading strategy for an investor: the case of partial information," Stochastic Processes and their Applications, Elsevier, vol. 76(1), pages 77-97, August.
    2. Holger Kraft, 2005. "Optimal portfolios and Heston's stochastic volatility model: an explicit solution for power utility," Quantitative Finance, Taylor & Francis Journals, vol. 5(3), pages 303-313.
    3. Thaleia Zariphopoulou, 2001. "A solution approach to valuation with unhedgeable risks," Finance and Stochastics, Springer, vol. 5(1), pages 61-82.
    4. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dalia Ibrahim & Frédéric Abergel, 2014. "Non-linear filtering and optimal investment under partial information for stochastic volatility models," Working Papers hal-01018869, HAL.
    2. Mahan Tahvildari, 2021. "Forward indifference valuation and hedging of basis risk under partial information," Papers 2101.00251, arXiv.org.
    3. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    4. Wang, Yuanrong & Aste, Tomaso, 2023. "Dynamic portfolio optimization with inverse covariance clustering," LSE Research Online Documents on Economics 117701, London School of Economics and Political Science, LSE Library.
    5. An Chen & Thai Nguyen & Manuel Rach, 2021. "A collective investment problem in a stochastic volatility environment: The impact of sharing rules," Annals of Operations Research, Springer, vol. 302(1), pages 85-109, July.
    6. Flavio Angelini & Katia Colaneri & Stefano Herzel & Marco Nicolosi, 2021. "Implicit incentives for fund managers with partial information," Computational Management Science, Springer, vol. 18(4), pages 539-561, October.
    7. Matoussi, Anis & Xing, Hao, 2018. "Convex duality for Epstein-Zin stochastic differential utility," LSE Research Online Documents on Economics 82519, London School of Economics and Political Science, LSE Library.
    8. Yang Shen, 2020. "Effect of Variance Swap in Hedging Volatility Risk," Risks, MDPI, vol. 8(3), pages 1-34, July.
    9. M. Escobar-Anel & M. Kschonnek & R. Zagst, 2023. "Mind the cap!—constrained portfolio optimisation in Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 23(12), pages 1793-1813, November.
    10. Jan Kallsen & Johannes Muhle-Karbe, 2009. "Utility maximization in models with conditionally independent increments," Papers 0911.3608, arXiv.org.
    11. Escobar, Marcos & Ferrando, Sebastian & Rubtsov, Alexey, 2016. "Portfolio choice with stochastic interest rates and learning about stock return predictability," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 347-370.
    12. Simon Ellersgaard & Martin Tegnér, 2018. "Stochastic volatility for utility maximizers — A martingale approach," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-39, March.
    13. Escobar, Marcos & Ferrando, Sebastian & Rubtsov, Alexey, 2015. "Robust portfolio choice with derivative trading under stochastic volatility," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 142-157.
    14. Paolo Guasoni & Scott Robertson, 2012. "Portfolios and risk premia for the long run," Papers 1203.1399, arXiv.org.
    15. Yichen Zhu & Marcos Escobar-Anel & Matt Davison, 2023. "A Polynomial-Affine Approximation for Dynamic Portfolio Choice," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1177-1213, October.
    16. Wolfgang Putschögl & Jörn Sass, 2008. "Optimal consumption and investment under partial information," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 31(2), pages 137-170, November.
    17. Elena Boguslavskaya & Dmitry Muravey, 2015. "An explicit solution for optimal investment in Heston model," Papers 1505.02431, arXiv.org, revised May 2015.
    18. de Kort, J. & Vellekoop, M.H., 2017. "Existence of optimal consumption strategies in markets with longevity risk," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 107-121.
    19. Paolo Guasoni & Lóránt Nagy & Miklós Rásonyi, 2021. "Young, timid, and risk takers," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1332-1356, October.
    20. Jinzhu Li & Rong Wu, 2009. "Optimal investment problem with stochastic interest rate and stochastic volatility: Maximizing a power utility," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 407-420, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1407.1595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.