IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1405.5695.html
   My bibliography  Save this paper

Big Data, Socio-Psychological Theory, Algorithmic Text Analysis and Predicting the Michigan Consumer Sentiment Index

Author

Listed:
  • Rickard Nyman
  • Paul Ormerod

Abstract

We describe an exercise of using Big Data to predict the Michigan Consumer Sentiment Index, a widely used indicator of the state of confidence in the US economy. We carry out the exercise from a pure ex ante perspective. We use the methodology of algorithmic text analysis of an archive of brokers' reports over the period June 2010 through June 2013. The search is directed by the social-psychological theory of agent behaviour, namely conviction narrative theory. We compare one month ahead forecasts generated this way over a 15 month period with the forecasts reported for the consensus predictions of Wall Street economists. The former give much more accurate predictions, getting the direction of change correct on 12 of the 15 occasions compared to only 7 for the consensus predictions. We show that the approach retains significant predictive power even over a four month ahead horizon.

Suggested Citation

  • Rickard Nyman & Paul Ormerod, 2014. "Big Data, Socio-Psychological Theory, Algorithmic Text Analysis and Predicting the Michigan Consumer Sentiment Index," Papers 1405.5695, arXiv.org.
  • Handle: RePEc:arx:papers:1405.5695
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1405.5695
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lenka Mynaříková & Vít Pošta, 2023. "The Effect of Consumer Confidence and Subjective Well-being on Consumers’ Spending Behavior," Journal of Happiness Studies, Springer, vol. 24(2), pages 429-453, February.
    2. repec:hal:pseose:hal-02057279 is not listed on IDEAS
    3. David Tucket & Antoine Mandel & Diana Mangalagiu & Allen Abramson & Jochen Hinkel & Konstantinos Katsikopoulos & Alan Kirman & Thierry Malleret & Igor Mozetic & Paul Ormerod & Robert Elliot Smith & To, 2015. "Uncertainty, Decision Science, and Policy Making: A Manifesto for a Research Agenda," SciencePo Working papers Main hal-02057279, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1405.5695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.