IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1403.5302.html
   My bibliography  Save this paper

Asymptotic analysis of stock price densities and implied volatilities in mixed stochastic models

Author

Listed:
  • Archil Gulisashvili
  • Josep Vives

Abstract

In this paper, we obtain sharp asymptotic formulas with error estimates for the Mellin convolution of functions, and use these formulas to characterize the asymptotic behavior of marginal distribution densities of stock price processes in mixed stochastic models. Special examples of mixed models are jump-diffusion models and stochastic volatility models with jumps. We apply our general results to the Heston model with double exponential jumps, and make a detailed analysis of the asymptotic behavior of the stock price density, the call option pricing function, and the implied volatility in this model. We also obtain similar results for the Heston model with jumps distributed according to the NIG law.

Suggested Citation

  • Archil Gulisashvili & Josep Vives, 2014. "Asymptotic analysis of stock price densities and implied volatilities in mixed stochastic models," Papers 1403.5302, arXiv.org.
  • Handle: RePEc:arx:papers:1403.5302
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1403.5302
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    2. Peter Friz & Stefan Gerhold & Archil Gulisashvili & Stephan Sturm, 2011. "On refined volatility smile expansion in the Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1151-1164.
    3. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    4. Leif Andersen & Vladimir Piterbarg, 2007. "Moment explosions in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(1), pages 29-50, January.
    5. del Baño Rollin, Sebastian & Ferreiro-Castilla, Albert & Utzet, Frederic, 2010. "On the density of log-spot in the Heston volatility model," Stochastic Processes and their Applications, Elsevier, vol. 120(10), pages 2037-2063, September.
    6. Leif Andersen & Alexander Lipton, 2013. "Asymptotics For Exponential Lévy Processes And Their Volatility Smile: Survey And New Results," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 1-98.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Archil Gulisashvili & Frederi Viens & Xin Zhang, 2015. "Extreme-Strike Asymptotics for General Gaussian Stochastic Volatility Models," Papers 1502.05442, arXiv.org, revised Feb 2017.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacquier, Antoine & Roome, Patrick, 2016. "Large-maturity regimes of the Heston forward smile," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1087-1123.
    2. Antoine Jacquier & Patrick Roome, 2013. "The Small-Maturity Heston Forward Smile," Papers 1303.4268, arXiv.org, revised Aug 2013.
    3. Eckhard Platen & Hardy Hulley, 2008. "Hedging for the Long Run," Research Paper Series 214, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Peter Friz & Stefan Gerhold, 2011. "Don't stay local - extrapolation analytics for Dupire's local volatility," Papers 1105.1267, arXiv.org.
    5. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.
    6. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    7. Stefano Pagliarani & Andrea Pascucci, 2017. "The exact Taylor formula of the implied volatility," Finance and Stochastics, Springer, vol. 21(3), pages 661-718, July.
    8. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2016. "Numerical stability of a hybrid method for pricing options," Papers 1603.07225, arXiv.org, revised Dec 2019.
    9. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2019. "Numerical Stability Of A Hybrid Method For Pricing Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-46, November.
    10. Gerald Cheang & Carl Chiarella & Andrew Ziogas, 2009. "An Analysis of American Options Under Heston Stochastic Volatility and Jump-Diffusion Dynamics," Research Paper Series 256, Quantitative Finance Research Centre, University of Technology, Sydney.
    11. Biswas, Arunangshu & Goswami, Anindya & Overbeck, Ludger, 2018. "Option pricing in a regime switching stochastic volatility model," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 116-126.
    12. Arunangshu Biswas & Anindya Goswami & Ludger Overbeck, 2017. "Option Pricing in a Regime Switching Stochastic Volatility Model," Papers 1707.01237, arXiv.org, revised Jan 2018.
    13. Philipp Mayer & Natalie Packham & Wolfgang Schmidt, 2015. "Static hedging under maturity mismatch," Finance and Stochastics, Springer, vol. 19(3), pages 509-539, July.
    14. Gerald H. L. Cheang & Carl Chiarella & Andrew Ziogas, 2013. "The representation of American options prices under stochastic volatility and jump-diffusion dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 13(2), pages 241-253, January.
    15. Coqueret, Guillaume & Tavin, Bertrand, 2016. "An investigation of model risk in a market with jumps and stochastic volatility," European Journal of Operational Research, Elsevier, vol. 253(3), pages 648-658.
    16. Carole Bernard & Zhenyu Cui & Don McLeish, 2013. "On the martingale property in stochastic volatility models based on time-homogeneous diffusions," Papers 1310.0092, arXiv.org, revised Jul 2014.
    17. Cui, Yiran & del Baño Rollin, Sebastian & Germano, Guido, 2017. "Full and fast calibration of the Heston stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 263(2), pages 625-638.
    18. Viktor Stojkoski & Trifce Sandev & Lasko Basnarkov & Ljupco Kocarev & Ralf Metzler, 2020. "Generalised geometric Brownian motion: Theory and applications to option pricing," Papers 2011.00312, arXiv.org.
    19. H. Peter Boswijk & Roger J. A. Laeven & Evgenii Vladimirov, 2022. "Estimating Option Pricing Models Using a Characteristic Function-Based Linear State Space Representation," Papers 2210.06217, arXiv.org.
    20. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1403.5302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.