IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v11y2011i8p1151-1164.html
   My bibliography  Save this article

On refined volatility smile expansion in the Heston model

Author

Listed:
  • Peter Friz
  • Stefan Gerhold
  • Archil Gulisashvili
  • Stephan Sturm

Abstract

It is known that Heston's stochastic volatility model exhibits moment explosion, and that the critical moment s+ can be obtained by solving (numerically) a simple equation. This yields a leading-order expansion for the implied volatility at large strikes: σBS(k, T)2T ∼ Ψ(s+ - 1) × k (Roger Lee's moment formula). Motivated by recent 'tail-wing' refinements of this moment formula, we first derive a novel tail expansion for the Heston density, sharpening previous work of Drăgulescu and Yakovenko [Quant. Finance, 2002, 2(6), 443-453], and then show the validity of a refined expansion of the type σBS(k, T)2T = (β1k1/2 + β2 + ···)2, where all constants are explicitly known as functions of s+, the Heston model parameters, the spot vol and maturity T. In the case of the 'zero-correlation' Heston model, such an expansion was derived by Gulisashvili and Stein [Appl. Math. Optim., 2010, 61(3), 287-315]. Our methods and results may prove useful beyond the Heston model: the entire quantitative analysis is based on affine principles and at no point do we need knowledge of the (explicit, but cumbersome) closed-form expression of the Fourier transform of log ST (equivalently the Mellin transform of ST). What matters is that these transforms satisfy ordinary differential equations of the Riccati type. Secondly, our analysis reveals a new parameter (the 'critical slope'), defined in a model-free manner, which drives the second- and higher-order terms in tail and implied volatility expansions.

Suggested Citation

  • Peter Friz & Stefan Gerhold & Archil Gulisashvili & Stephan Sturm, 2011. "On refined volatility smile expansion in the Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1151-1164.
  • Handle: RePEc:taf:quantf:v:11:y:2011:i:8:p:1151-1164
    DOI: 10.1080/14697688.2010.541486
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697688.2010.541486
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2010.541486?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew Papanicolaou, 2021. "Extreme-Strike Comparisons and Structural Bounds for SPX and VIX Options," Papers 2101.00299, arXiv.org, revised Mar 2021.
    2. Peter K. Friz & Paul Gassiat & Paolo Pigato, 2018. "Precise asymptotics: robust stochastic volatility models," Papers 1811.00267, arXiv.org, revised Nov 2020.
    3. Kun Gao & Roger Lee, 2014. "Asymptotics of implied volatility to arbitrary order," Finance and Stochastics, Springer, vol. 18(2), pages 349-392, April.
    4. Stefan Gerhold & Christoph Gerstenecker & Arpad Pinter, 2019. "Moment explosions in the rough Heston model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 575-608, December.
    5. Sidi Mohamed Aly, 2016. "Moment explosions, implied volatility and local volatility at extreme strikes," Papers 1601.06995, arXiv.org, revised Aug 2016.
    6. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    7. Recchioni, Maria Cristina & Iori, Giulia & Tedeschi, Gabriele & Ouellette, Michelle S., 2021. "The complete Gaussian kernel in the multi-factor Heston model: Option pricing and implied volatility applications," European Journal of Operational Research, Elsevier, vol. 293(1), pages 336-360.
    8. Archil Gulisashvili & Josep Vives, 2014. "Asymptotic analysis of stock price densities and implied volatilities in mixed stochastic models," Papers 1403.5302, arXiv.org.
    9. Stefano De Marco & Caroline Hillairet & Antoine Jacquier, 2017. "Shapes of implied volatility with positive mass at zero," Working Papers 2017-77, Center for Research in Economics and Statistics.
    10. Peter Friz & Stefan Gerhold, 2011. "Don't stay local - extrapolation analytics for Dupire's local volatility," Papers 1105.1267, arXiv.org.
    11. Akihiko Takahashi, 2015. "Asymptotic Expansion Approach in Finance," CARF F-Series CARF-F-356, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Aug 2015.
    12. Stefan Gerhold & Christoph Gerstenecker & Arpad Pinter, 2018. "Moment Explosions in the Rough Heston Model," Papers 1801.09458, arXiv.org, revised Apr 2018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:11:y:2011:i:8:p:1151-1164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.