IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1403.5236.html
   My bibliography  Save this paper

A change of measure preserving the affine structure in the BNS model for commodity markets

Author

Listed:
  • Fred Espen Benth
  • Salvador Ortiz-Latorre

Abstract

For a commodity spot price dynamics given by an Ornstein-Uhlenbeck process with Barndorff-Nielsen and Shephard stochastic volatility, we price forwards using a class of pricing measures that simultaneously allow for change of level and speed in the mean reversion of both the price and the volatility. The risk premium is derived in the case of arithmetic and geometric spot price processes, and it is demonstrated that we can provide flexible shapes that is typically observed in energy markets. In particular, our pricing measure preserves the affine model structure and decomposes into a price and volatility risk premium, and in the geometric spot price model we need to resort to a detailed analysis of a system of Riccati equations, for which we show existence and uniqueness of solution and asymptotic properties that explains the possible risk premium profiles. Among the typical shapes, the risk premium allows for a stochastic change of sign, and can attain positive values in the short end of the forward market and negative in the long end.

Suggested Citation

  • Fred Espen Benth & Salvador Ortiz-Latorre, 2014. "A change of measure preserving the affine structure in the BNS model for commodity markets," Papers 1403.5236, arXiv.org.
  • Handle: RePEc:arx:papers:1403.5236
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1403.5236
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anders B. Trolle & Eduardo S. Schwartz, 2009. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4423-4461, November.
    2. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    3. Fred Espen Benth & Salvador Ortiz-Latorre, 2013. "A pricing measure to explain the risk premium in power markets," Papers 1308.3378, arXiv.org.
    4. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    5. Kolos, Sergey P. & Ronn, Ehud I., 2008. "Estimating the commodity market price of risk for energy prices," Energy Economics, Elsevier, vol. 30(2), pages 621-641, March.
    6. Benth, Fred Espen & Cartea, Álvaro & Kiesel, Rüdiger, 2008. "Pricing forward contracts in power markets by the certainty equivalence principle: Explaining the sign of the market risk premium," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2006-2021, October.
    7. Kallsen, Jan & Muhle-Karbe, Johannes, 2010. "Exponentially affine martingales, affine measure changes and exponential moments of affine processes," Stochastic Processes and their Applications, Elsevier, vol. 120(2), pages 163-181, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iván Blanco, Juan Ignacio Peña, and Rosa Rodriguez, 2018. "Modelling Electricity Swaps with Stochastic Forward Premium Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    2. Ewald, Christian & Zou, Yihan, 2021. "Analytic formulas for futures and options for a linear quadratic jump diffusion model with seasonal stochastic volatility and convenience yield: Do fish jump?," European Journal of Operational Research, Elsevier, vol. 294(2), pages 801-815.
    3. Andrés Mirantes & Javier Población & Gregorio Serna, 2015. "Commodity derivative valuation under a factor model with time-varying market prices of risk," Review of Derivatives Research, Springer, vol. 18(1), pages 75-93, April.
    4. Huisman, Ronald & Kilic, Mehtap, 2012. "Electricity Futures Prices: Indirect Storability, Expectations, and Risk Premiums," Energy Economics, Elsevier, vol. 34(4), pages 892-898.
    5. Back, Janis & Prokopczuk, Marcel & Rudolf, Markus, 2013. "Seasonality and the valuation of commodity options," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 273-290.
    6. Aur'elien Alfonsi & Nerea Vadillo, 2023. "Risk valuation of quanto derivatives on temperature and electricity," Papers 2310.07692, arXiv.org, revised Apr 2024.
    7. Baum, Christopher F. & Zerilli, Paola & Chen, Liyuan, 2021. "Stochastic volatility, jumps and leverage in energy and stock markets: Evidence from high frequency data," Energy Economics, Elsevier, vol. 93(C).
    8. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    9. Na Jin & Sergio Lence & Chad Hart & Dermot Hayes, 2012. "The Long-Term Structure of Commodity Futures," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(3), pages 718-735.
    10. Andrés García-Mirantes & Beatriz Larraz & Javier Población, 2020. "A Proposal to Fix the Number of Factors on Modeling the Dynamics of Futures Contracts on Commodity Prices," Mathematics, MDPI, vol. 8(6), pages 1-13, June.
    11. Chris Brooks & Marcel Prokopczuk, 2013. "The dynamics of commodity prices," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 527-542, March.
    12. Shao, Chengwu & Bhar, Ramaprasad & Colwell, David B., 2015. "A multi-factor model with time-varying and seasonal risk premiums for the natural gas market," Energy Economics, Elsevier, vol. 50(C), pages 207-214.
    13. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    14. Gareth William Peters & Mark Briers & Pavel Shevchenko & Arnaud Doucet, 2013. "Calibration and Filtering for Multi Factor Commodity Models with Seasonality: Incorporating Panel Data from Futures Contracts," Methodology and Computing in Applied Probability, Springer, vol. 15(4), pages 841-874, December.
    15. Fred Espen Benth & Claudia Kluppelberg & Gernot Muller & Linda Vos, 2012. "Futures pricing in electricity markets based on stable CARMA spot models," Papers 1201.1151, arXiv.org.
    16. Cortazar, Gonzalo & Kovacevic, Ivo & Schwartz, Eduardo S., 2015. "Expected commodity returns and pricing models," Energy Economics, Elsevier, vol. 49(C), pages 60-71.
    17. Naomi Boyd & Bingxin Li & Rui Liu, 2022. "Risk premia in the term structure of crude oil futures: long-run and short-run volatility components," Review of Quantitative Finance and Accounting, Springer, vol. 58(4), pages 1505-1533, May.
    18. Ladokhin, Sergiy & Borovkova, Svetlana, 2021. "Three-factor commodity forward curve model and its joint P and Q dynamics," Energy Economics, Elsevier, vol. 101(C).
    19. Arismendi, Juan C. & Back, Janis & Prokopczuk, Marcel & Paschke, Raphael & Rudolf, Markus, 2016. "Seasonal Stochastic Volatility: Implications for the pricing of commodity options," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 53-65.
    20. Chevallier, Julien & Ielpo, Florian, 2017. "Investigating the leverage effect in commodity markets with a recursive estimation approach," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 763-778.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1403.5236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.