IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1401.1856.html
   My bibliography  Save this paper

Pricing of basket options I

Author

Listed:
  • Alexander Kushpel

Abstract

Pricing of high-dimensional options is a deep problem of the Theoretical Financial Mathematics. In this article we present a new class of L\'{e}vy driven models of stock markets. In our opinion, any market model should be based on a transparent and intuitively easily acceptable concept. In our case this is a linear system of stochastic equations. Our market model is based on the principle of inheritance, i.e. for the particular choice of parameters it coincides with known models. Also, the model proposed is effectively numerically realizable. For the class of models under cosideration, we give an explicit representations of characteristic functions. This allows us us to construct a sequence of approximation formulas to price basket options. We show that our approximation formulas have almost optimal rate of convergence in the sense of respective n-widths.

Suggested Citation

  • Alexander Kushpel, 2014. "Pricing of basket options I," Papers 1401.1856, arXiv.org.
  • Handle: RePEc:arx:papers:1401.1856
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1401.1856
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    2. Li, Minqiang, 2008. "Closed-Form Approximations for Spread Option Prices and Greeks," MPRA Paper 6994, University Library of Munich, Germany.
    3. Svetlana I Boyarchenko & Sergei Z Levendorskii, 2002. "Non-Gaussian Merton-Black-Scholes Theory," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 4955, October.
    4. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    5. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Kushpel, 2015. "Pricing of high-dimensional options," Papers 1510.07221, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Kushpel, 2015. "Pricing of high-dimensional options," Papers 1510.07221, arXiv.org.
    2. Minqiang Li & Jieyun Zhou & Shi-Jie Deng, 2010. "Multi-asset spread option pricing and hedging," Quantitative Finance, Taylor & Francis Journals, vol. 10(3), pages 305-324.
    3. Juan Arismendi, 2014. "A Multi-Asset Option Approximation for General Stochastic Processes," ICMA Centre Discussion Papers in Finance icma-dp2014-03, Henley Business School, University of Reading.
    4. Xenos Chang-Shuo Lin & Daniel Wei-Chung Miao & Emma En-Tze Chang, 2024. "Testing the Closed-Form Spread Option Pricing Formula Based on Gauss-Hermite Quadrature for a Jump-Diffusion Model," Computational Economics, Springer;Society for Computational Economics, vol. 64(5), pages 2879-2908, November.
    5. Villamor, Enrique & Olivares, Pablo, 2024. "Pricing exchange options under stochastic correlation," The North American Journal of Economics and Finance, Elsevier, vol. 73(C).
    6. Pellegrino, Tommaso & Sabino, Piergiacomo, 2014. "On the use of the moment-matching technique for pricing and hedging multi-asset spread options," Energy Economics, Elsevier, vol. 45(C), pages 172-185.
    7. Leccadito, Arturo & Paletta, Tommaso & Tunaru, Radu, 2016. "Pricing and hedging basket options with exact moment matching," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 59-69.
    8. Ole E. Barndorff-Nielsen & Neil Shephard, 2012. "Basics of Levy processes," Economics Papers 2012-W06, Economics Group, Nuffield College, University of Oxford.
    9. Jaehyuk Choi, 2018. "Sum of all Black–Scholes–Merton models: An efficient pricing method for spread, basket, and Asian options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(6), pages 627-644, June.
    10. Ping Wu & Robert J. Elliott, 2017. "Valuation of certain CMS spreads," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(4), pages 445-467, November.
    11. Nicola Cufaro Petroni & Piergiacomo Sabino, 2015. "Cointegrating Jumps: an Application to Energy Facilities," Papers 1509.01144, arXiv.org, revised Jul 2016.
    12. Matteo Gardini & Piergiacomo Sabino, 2022. "Exchange option pricing under variance gamma-like models," Papers 2207.00453, arXiv.org.
    13. Chun-Sing Lau & Chi-Fai Lo, 2014. "The pricing of basket-spread options," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1971-1982, November.
    14. Elisa Alòs & Jorge A. León, 2013. "On the closed-form approximation of short-time random strike options," Economics Working Papers 1347, Department of Economics and Business, Universitat Pompeu Fabra.
    15. Kwangil Bae, 2019. "Valuation and applications of compound basket options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(6), pages 704-720, June.
    16. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2022. "Efficient evaluation of expectations of functions of a stable L\'evy process and its extremum," Papers 2209.12349, arXiv.org.
    17. Xu Guo & Yutian Li, 2016. "Valuation of American options under the CGMY model," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1529-1539, October.
    18. Kirkby, J. Lars & Nguyen, Dang H. & Nguyen, Duy, 2020. "A general continuous time Markov chain approximation for multi-asset option pricing with systems of correlated diffusions," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    19. Roza Galeeva & Zi Wang, 2024. "Sector Formula for Approximation of Spread Option Value & Greeks and Its Applications," Commodities, MDPI, vol. 3(3), pages 1-33, July.
    20. Leif Andersen & Alexander Lipton, 2012. "Asymptotics for Exponential Levy Processes and their Volatility Smile: Survey and New Results," Papers 1206.6787, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1401.1856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.