IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1311.1545.html
   My bibliography  Save this paper

Varadhan's formula, conditioned diffusions, and local volatilities

Author

Listed:
  • Stefano De Marco
  • Peter Friz

Abstract

Motivated by marginals-mimicking results for It\^o processes via SDEs and by their applications to volatility modeling in finance, we discuss the weak convergence of the law of a hypoelliptic diffusions conditioned to belong to a target affine subspace at final time, namely $\mathcal{L}(Z_t|Y_t = y)$ if $X_{\cdot}=(Y_\cdot,Z_{\cdot})$. To do so, we revisit Varadhan-type estimates in a small-noise regime (as opposed to small-time), studying the density of the lower-dimensional component $Y$. The application to stochastic volatility models include the small-time and, for certain models, the large-strike asymptotics of the Gyongy-Dupire's local volatility function. The final product are asymptotic formulae that can (i) motivate parameterizations of the local volatility surface and (ii) be used to extrapolate local volatilities in a given model.

Suggested Citation

  • Stefano De Marco & Peter Friz, 2013. "Varadhan's formula, conditioned diffusions, and local volatilities," Papers 1311.1545, arXiv.org, revised Jun 2016.
  • Handle: RePEc:arx:papers:1311.1545
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1311.1545
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    2. Roger W. Lee, 2004. "The Moment Formula For Implied Volatility At Extreme Strikes," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 469-480, July.
    3. Jim Gatheral & Tai-Ho Wang, 2012. "The Heat-Kernel Most-Likely-Path Approximation," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 1-18.
    4. Jim Gatheral & Tai-Ho Wang, 2012. "The Heat-Kernel Most-Likely-Path Approximation," World Scientific Book Chapters, in: Matheus R Grasselli & Lane P Hughston (ed.), Finance at Fields, chapter 17, pages 389-406, World Scientific Publishing Co. Pte. Ltd..
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. J. D. Deuschel & P. K. Friz & A. Jacquier & S. Violante, 2011. "Marginal density expansions for diffusions and stochastic volatility, part I: Theoretical Foundations," Papers 1111.2462, arXiv.org, revised May 2013.
    7. Rainer Schöbel & Jianwei Zhu, 1999. "Stochastic Volatility With an Ornstein–Uhlenbeck Process: An Extension," Review of Finance, European Finance Association, vol. 3(1), pages 23-46.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacquier, Antoine & Roome, Patrick, 2016. "Large-maturity regimes of the Heston forward smile," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1087-1123.
    2. Hossein Jafari & Ghazaleh Rahimi, 2019. "Small-Time Asymptotics In Geometric Asian Options For A Stochastic Volatility Jump-Diffusion Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-19, March.
    3. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
    4. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    5. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    6. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    7. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    8. Jaehyuk Choi, 2024. "Exact simulation scheme for the Ornstein-Uhlenbeck driven stochastic volatility model with the Karhunen-Lo\`eve expansions," Papers 2402.09243, arXiv.org.
    9. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    10. Dong-Mei Zhu & Jiejun Lu & Wai-Ki Ching & Tak-Kuen Siu, 2019. "Option Pricing Under a Stochastic Interest Rate and Volatility Model with Hidden Markovian Regime-Switching," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 555-586, February.
    11. A. Gulisashvili, 2009. "Asymptotic Formulas with Error Estimates for Call Pricing Functions and the Implied Volatility at Extreme Strikes," Papers 0906.0394, arXiv.org.
    12. Zhu, Song-Ping & Lian, Guang-Hua, 2015. "Pricing forward-start variance swaps with stochastic volatility," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 920-933.
    13. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    14. Florence Guillaume & Wim Schoutens, 2014. "Heston Model: The Variance Swap Calibration," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 76-89, April.
    15. Antoine Jacquier & Patrick Roome, 2013. "The Small-Maturity Heston Forward Smile," Papers 1303.4268, arXiv.org, revised Aug 2013.
    16. repec:uts:finphd:41 is not listed on IDEAS
    17. Archil Gulisashvili & Frederi Viens & Xin Zhang, 2015. "Small-time asymptotics for Gaussian self-similar stochastic volatility models," Papers 1505.05256, arXiv.org, revised Mar 2016.
    18. Alexander Lipton, 2024. "Hydrodynamics of Markets:Hidden Links Between Physics and Finance," Papers 2403.09761, arXiv.org.
    19. J. D. Deuschel & P. K. Friz & A. Jacquier & S. Violante, 2011. "Marginal density expansions for diffusions and stochastic volatility, part I: Theoretical Foundations," Papers 1111.2462, arXiv.org, revised May 2013.
    20. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2017. "Equity-linked annuity pricing with cliquet-style guarantees in regime-switching and stochastic volatility models with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 46-62.
    21. Damien Ackerer & Damir Filipović, 2020. "Option pricing with orthogonal polynomial expansions," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 47-84, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1311.1545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.