IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1308.5019.html
   My bibliography  Save this paper

A Taylor series approach to pricing and implied vol for LSV models

Author

Listed:
  • Matthew Lorig
  • Stefano Pagliarani
  • Andrea Pascucci

Abstract

Using classical Taylor series techniques, we develop a unified approach to pricing and implied volatility for European-style options in a general local-stochastic volatility setting. Our price approximations require only a normal CDF and our implied volatility approximations are fully explicit (ie, they require no special functions, no infinite series and no numerical integration). As such, approximate prices can be computed as efficiently as Black-Scholes prices, and approximate implied volatilities can be computed nearly instantaneously.

Suggested Citation

  • Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2013. "A Taylor series approach to pricing and implied vol for LSV models," Papers 1308.5019, arXiv.org.
  • Handle: RePEc:arx:papers:1308.5019
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1308.5019
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matthew Lorig, 2013. "The exact smile of certain local volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 897-905, May.
    2. Gabriel G. Drimus, 2012. "Options on realized variance by transform methods: a non-affine stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1679-1694, November.
    3. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2013. "A family of density expansions for L\'evy-type processes," Papers 1312.7328, arXiv.org.
    4. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2017. "Explicit Implied Volatilities For Multifactor Local-Stochastic Volatility Models," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 926-960, July.
    5. Peter Carr & Vadim Linetsky, 2006. "A jump to default extended CEV model: an application of Bessel processes," Finance and Stochastics, Springer, vol. 10(3), pages 303-330, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2014. "Asymptotics for $d$-dimensional L\'evy-type processes," Papers 1404.3153, arXiv.org, revised Nov 2014.
    2. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2013. "Analytical expansions for parabolic equations," Papers 1312.3314, arXiv.org, revised Nov 2014.
    3. Kathrin Glau & Paul Herold & Dilip B. Madan & Christian Potz, 2017. "The Chebyshev method for the implied volatility," Papers 1710.01797, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2017. "Explicit Implied Volatilities For Multifactor Local-Stochastic Volatility Models," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 926-960, July.
    2. Andrea Barletta & Elisa Nicolato & Stefano Pagliarani, 2019. "The short‐time behavior of VIX‐implied volatilities in a multifactor stochastic volatility framework," Mathematical Finance, Wiley Blackwell, vol. 29(3), pages 928-966, July.
    3. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2013. "Analytical expansions for parabolic equations," Papers 1312.3314, arXiv.org, revised Nov 2014.
    4. Stefano Pagliarani & Andrea Pascucci, 2017. "The exact Taylor formula of the implied volatility," Finance and Stochastics, Springer, vol. 21(3), pages 661-718, July.
    5. Agostino Capponi & Stefano Pagliarani & Tiziano Vargiolu, 2014. "Pricing vulnerable claims in a Lévy-driven model," Finance and Stochastics, Springer, vol. 18(4), pages 755-789, October.
    6. Matthew Lorig & Ronnie Sircar, 2015. "Portfolio Optimization under Local-Stochastic Volatility: Coefficient Taylor Series Approximations & Implied Sharpe Ratio," Papers 1506.06180, arXiv.org.
    7. Zhigang Tong, 2017. "Modelling VIX and VIX derivatives with reducible diffusions," International Journal of Bonds and Derivatives, Inderscience Enterprises Ltd, vol. 3(2), pages 153-175.
    8. Tim Leung & Matthew Lorig, 2016. "Optimal static quadratic hedging," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1341-1355, September.
    9. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
    10. Almeida, Thiago Ramos, 2024. "Estimating time-varying factors’ variance in the string-term structure model with stochastic volatility," Research in International Business and Finance, Elsevier, vol. 70(PA).
    11. Stefano De Marco, 2020. "On the harmonic mean representation of the implied volatility," Papers 2007.03585, arXiv.org.
    12. Chenxu Li, 2014. "Closed-Form Expansion, Conditional Expectation, and Option Valuation," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 487-516, May.
    13. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    14. Nan Chen & S. G. Kou, 2009. "Credit Spreads, Optimal Capital Structure, And Implied Volatility With Endogenous Default And Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 343-378, July.
    15. Hilscher, Jens, 2007. "Is the corporate bond market forward looking?," Working Paper Series 800, European Central Bank.
    16. Dassios, Angelos & Li, Luting, 2020. "Explicit asymptotic on first passage times of diffusion processes," LSE Research Online Documents on Economics 103087, London School of Economics and Political Science, LSE Library.
    17. Yang, Zhaojun & Zhang, Chunhong, 2015. "Two new equity default swaps with idiosyncratic risk," International Review of Economics & Finance, Elsevier, vol. 37(C), pages 254-273.
    18. Fazlollah Soleymani & Andrey Itkin, 2019. "Pricing foreign exchange options under stochastic volatility and interest rates using an RBF--FD method," Papers 1903.00937, arXiv.org.
    19. Cao, Jiling & Kim, Jeong-Hoon & Liu, Wenqiang & Zhang, Wenjun, 2023. "Rescaling the double-mean-reverting 4/2 stochastic volatility model for derivative pricing," Finance Research Letters, Elsevier, vol. 58(PB).
    20. Matthew Lorig & Natchanon Suaysom, 2021. "Options on Bonds: Implied Volatilities from Affine Short-Rate Dynamics," Papers 2106.04518, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1308.5019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.