IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1307.2035.html
   My bibliography  Save this paper

Periodic Strategies: A New Solution Concept and an Algorithm for NonTrivial Strategic Form Games

Author

Listed:
  • V. K. Oikonomou
  • J. Jost

Abstract

We introduce a new solution concept, called periodicity, for selecting optimal strategies in strategic form games. This periodicity solution concept yields new insight into non-trivial games. In mixed strategy strategic form games, periodic solutions yield values for the utility function of each player that are equal to the Nash equilibrium ones. In contrast to the Nash strategies, here the payoffs of each player are robust against what the opponent plays. Sometimes, periodicity strategies yield higher utilities, and sometimes the Nash strategies do, but often the utilities of these two strategies coincide. We formally define and study periodic strategies in two player perfect information strategic form games with pure strategies and we prove that every non-trivial finite game has at least one periodic strategy, with non-trivial meaning non-degenerate payoffs. In some classes of games where mixed strategies are used, we identify quantitative features. Particularly interesting are the implications for collective action games, since there the collective action strategy can be incorporated in a purely non-cooperative context. Moreover, we address the periodicity issue when the players have a continuum set of strategies available.

Suggested Citation

  • V. K. Oikonomou & J. Jost, 2013. "Periodic Strategies: A New Solution Concept and an Algorithm for NonTrivial Strategic Form Games," Papers 1307.2035, arXiv.org, revised Jan 2018.
  • Handle: RePEc:arx:papers:1307.2035
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1307.2035
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Epstein, Larry G & Wang, Tan, 1996. ""Beliefs about Beliefs" without Probabilities," Econometrica, Econometric Society, vol. 64(6), pages 1343-1373, November.
    2. Dekel, Eddie & Fudenberg, Drew, 1990. "Rational behavior with payoff uncertainty," Journal of Economic Theory, Elsevier, vol. 52(2), pages 243-267, December.
    3. Bernheim, B Douglas, 1984. "Rationalizable Strategic Behavior," Econometrica, Econometric Society, vol. 52(4), pages 1007-1028, July.
    4. Moulin, Herve & Ray, Indrajit & Sen Gupta, Sonali, 2014. "Improving Nash by coarse correlation," Journal of Economic Theory, Elsevier, vol. 150(C), pages 852-865.
    5. Battigalli, Pierpaolo, 1996. "Strategic Independence and Perfect Bayesian Equilibria," Journal of Economic Theory, Elsevier, vol. 70(1), pages 201-234, July.
    6. Geir B. Asheim, 2002. "Proper rationalizability in lexicographic beliefs," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(4), pages 453-478.
    7. Mariotti, Marco, 1997. "A Model of Agreements in Strategic Form Games," Journal of Economic Theory, Elsevier, vol. 74(1), pages 196-217, May.
    8. Frank Schuhmacher, 1999. "Proper rationalizability and backward induction," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(4), pages 599-615.
    9. Rubinstein, Ariel, 1991. "Comments on the Interpretation of Game Theory," Econometrica, Econometric Society, vol. 59(4), pages 909-924, July.
    10. Stalnaker, Robert, 1998. "Belief revision in games: forward and backward induction1," Mathematical Social Sciences, Elsevier, vol. 36(1), pages 31-56, July.
    11. Battigalli, Pierpaolo & Siniscalchi, Marciano, 1999. "Hierarchies of Conditional Beliefs and Interactive Epistemology in Dynamic Games," Journal of Economic Theory, Elsevier, vol. 88(1), pages 188-230, September.
    12. Battigalli, Pierpaolo, 1997. "On Rationalizability in Extensive Games," Journal of Economic Theory, Elsevier, vol. 74(1), pages 40-61, May.
    13. Philip J. Reny, 1992. "Rationality in Extensive-Form Games," Journal of Economic Perspectives, American Economic Association, vol. 6(4), pages 103-118, Fall.
    14. van Damme, E.E.C., 1984. "A relation between perfect equilibria in extensive form games and proper equilibria in normal form games," Other publications TiSEM 3734d89e-fd5c-4c80-a230-5, Tilburg University, School of Economics and Management.
    15. Pearce, David G, 1984. "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, Econometric Society, vol. 52(4), pages 1029-1050, July.
    16. Battigalli, Pierpaolo & Siniscalchi, Marciano, 2002. "Strong Belief and Forward Induction Reasoning," Journal of Economic Theory, Elsevier, vol. 106(2), pages 356-391, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pfeifer, Antun & Feijoo, Felipe & Duić, Neven, 2023. "Fast energy transition as a best strategy for all? The nash equilibrium of long-term energy planning strategies in coupled power markets," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. V. K. Oikonomou & J. Jost, 2020. "Periodic Strategies II: Generalizations and Extensions," Papers 2005.12832, arXiv.org.
    2. Oikonomou, V.K. & Jost, J, 2013. "Periodic strategies and rationalizability in perfect information 2-Player strategic form games," MPRA Paper 48117, University Library of Munich, Germany.
    3. Perea Andrés, 2003. "Rationalizability and Minimal Complexity in Dynamic Games," Research Memorandum 047, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    4. Dekel, Eddie & Siniscalchi, Marciano, 2015. "Epistemic Game Theory," Handbook of Game Theory with Economic Applications,, Elsevier.
    5. Perea ý Monsuwé, A., 2003. "Proper rationalizability and belief revision in dynamic games," Research Memorandum 048, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    6. Asheim, Geir B., 2002. "On the epistemic foundation for backward induction," Mathematical Social Sciences, Elsevier, vol. 44(2), pages 121-144, November.
    7. Asheim, Geir B. & Brunnschweiler, Thomas, 2023. "Epistemic foundation of the backward induction paradox," Games and Economic Behavior, Elsevier, vol. 141(C), pages 503-514.
    8. Asheim,G.B. & Perea,A., 2000. "Lexicographic probabilities and rationalizability in extensive games," Memorandum 38/2000, Oslo University, Department of Economics.
    9. Asheim, Geir B. & Perea, Andres, 2005. "Sequential and quasi-perfect rationalizability in extensive games," Games and Economic Behavior, Elsevier, vol. 53(1), pages 15-42, October.
    10. Asheim, Geir B. & Dufwenberg, Martin, 2003. "Admissibility and common belief," Games and Economic Behavior, Elsevier, vol. 42(2), pages 208-234, February.
    11. Perea, Andres, 2007. "Proper belief revision and equilibrium in dynamic games," Journal of Economic Theory, Elsevier, vol. 136(1), pages 572-586, September.
    12. Perea, Andrés, 2017. "Forward induction reasoning and correct beliefs," Journal of Economic Theory, Elsevier, vol. 169(C), pages 489-516.
    13. Andrés Perea & Elias Tsakas, 2019. "Limited focus in dynamic games," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(2), pages 571-607, June.
    14. Feinberg, Yossi, 2005. "Subjective reasoning--dynamic games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 54-93, July.
    15. Battigalli, Pierpaolo & Dufwenberg, Martin, 2009. "Dynamic psychological games," Journal of Economic Theory, Elsevier, vol. 144(1), pages 1-35, January.
    16. Battigalli, Pierpaolo & Bonanno, Giacomo, 1999. "Recent results on belief, knowledge and the epistemic foundations of game theory," Research in Economics, Elsevier, vol. 53(2), pages 149-225, June.
    17. Yang, Chih-Chun, 2018. "Perfect forward induction," Economics Letters, Elsevier, vol. 170(C), pages 113-116.
    18. Perea ý Monsuwé, A., 2006. "Epistemic foundations for backward induction: an overview," Research Memorandum 036, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    19. Adam Brandenburger & Amanda Friedenberg, 2014. "Self-Admissible Sets," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 8, pages 213-249, World Scientific Publishing Co. Pte. Ltd..
    20. Oliver Board, 2002. "Algorithmic Characterization of Rationalizability in Extensive Form Games," Working Paper 244, Department of Economics, University of Pittsburgh, revised Jan 2002.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1307.2035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.