IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v170y2018icp113-116.html
   My bibliography  Save this article

Perfect forward induction

Author

Listed:
  • Yang, Chih-Chun

Abstract

Suppose that every player in an extensive-form game incorporates perfection in conducting forward induction reasoning. To capture this idea, we propose the notion of “perfect extensive-form rationalizability” (PEFR). In every simultaneous move game, PEFR coincides with Brandenburger’s (1992) permissibility, which can be obtained by Dekel and Fudenberg’s (1990) procedure. Although PEFR is closely relate to iterated admissibility and other cautious reasoning processes, we show that there is no relationship in general.

Suggested Citation

  • Yang, Chih-Chun, 2018. "Perfect forward induction," Economics Letters, Elsevier, vol. 170(C), pages 113-116.
  • Handle: RePEc:eee:ecolet:v:170:y:2018:i:c:p:113-116
    DOI: 10.1016/j.econlet.2018.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176518302313
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2018.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asheim, Geir B. & Perea, Andres, 2005. "Sequential and quasi-perfect rationalizability in extensive games," Games and Economic Behavior, Elsevier, vol. 53(1), pages 15-42, October.
    2. Dekel, Eddie & Fudenberg, Drew, 1990. "Rational behavior with payoff uncertainty," Journal of Economic Theory, Elsevier, vol. 52(2), pages 243-267, December.
    3. Battigalli, Pierpaolo, 1997. "On Rationalizability in Extensive Games," Journal of Economic Theory, Elsevier, vol. 74(1), pages 40-61, May.
    4. Bernheim, B Douglas, 1984. "Rationalizable Strategic Behavior," Econometrica, Econometric Society, vol. 52(4), pages 1007-1028, July.
    5. Perea, Andrés, 2014. "Belief in the opponentsʼ future rationality," Games and Economic Behavior, Elsevier, vol. 83(C), pages 231-254.
    6. Adam Brandenburger & Amanda Friedenberg & H. Jerome Keisler, 2014. "Admissibility in Games," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 7, pages 161-212, World Scientific Publishing Co. Pte. Ltd..
    7. van Damme, E.E.C., 1984. "A relation between perfect equilibria in extensive form games and proper equilibria in normal form games," Other publications TiSEM 3734d89e-fd5c-4c80-a230-5, Tilburg University, School of Economics and Management.
    8. Myerson, Roger B, 1986. "Multistage Games with Communication," Econometrica, Econometric Society, vol. 54(2), pages 323-358, March.
    9. Pearce, David G, 1984. "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, Econometric Society, vol. 52(4), pages 1029-1050, July.
    10. Monderer, Dov & Samet, Dov, 1989. "Approximating common knowledge with common beliefs," Games and Economic Behavior, Elsevier, vol. 1(2), pages 170-190, June.
    11. Shimoji, Makoto & Watson, Joel, 1998. "Conditional Dominance, Rationalizability, and Game Forms," Journal of Economic Theory, Elsevier, vol. 83(2), pages 161-195, December.
    12. Battigalli, Pierpaolo & Siniscalchi, Marciano, 2002. "Strong Belief and Forward Induction Reasoning," Journal of Economic Theory, Elsevier, vol. 106(2), pages 356-391, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dekel, Eddie & Siniscalchi, Marciano, 2015. "Epistemic Game Theory," Handbook of Game Theory with Economic Applications,, Elsevier.
    2. Adam Brandenburger & Amanda Friedenberg, 2014. "Self-Admissible Sets," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 8, pages 213-249, World Scientific Publishing Co. Pte. Ltd..
    3. Asheim, Geir B. & Brunnschweiler, Thomas, 2023. "Epistemic foundation of the backward induction paradox," Games and Economic Behavior, Elsevier, vol. 141(C), pages 503-514.
    4. Asheim, Geir B. & Perea, Andres, 2005. "Sequential and quasi-perfect rationalizability in extensive games," Games and Economic Behavior, Elsevier, vol. 53(1), pages 15-42, October.
    5. Asheim, Geir B. & Dufwenberg, Martin, 2003. "Admissibility and common belief," Games and Economic Behavior, Elsevier, vol. 42(2), pages 208-234, February.
    6. Burkhard C. Schipper & Hang Zhou, 2022. "Level-k Thinking in the Extensive Form," Working Papers 352, University of California, Davis, Department of Economics.
    7. Battigalli, Pierpaolo & Bonanno, Giacomo, 1999. "Recent results on belief, knowledge and the epistemic foundations of game theory," Research in Economics, Elsevier, vol. 53(2), pages 149-225, June.
    8. Battigalli, Pierpaolo & De Vito, Nicodemo, 2021. "Beliefs, plans, and perceived intentions in dynamic games," Journal of Economic Theory, Elsevier, vol. 195(C).
    9. Perea, Andrés, 2014. "Belief in the opponentsʼ future rationality," Games and Economic Behavior, Elsevier, vol. 83(C), pages 231-254.
    10. Zuazo-Garin, Peio, 2017. "Uncertain information structures and backward induction," Journal of Mathematical Economics, Elsevier, vol. 71(C), pages 135-151.
    11. Perea, Andrés, 2017. "Forward induction reasoning and correct beliefs," Journal of Economic Theory, Elsevier, vol. 169(C), pages 489-516.
    12. V. K. Oikonomou & J. Jost, 2013. "Periodic Strategies: A New Solution Concept and an Algorithm for NonTrivial Strategic Form Games," Papers 1307.2035, arXiv.org, revised Jan 2018.
    13. V. K. Oikonomou & J. Jost, 2020. "Periodic Strategies II: Generalizations and Extensions," Papers 2005.12832, arXiv.org.
    14. Xiao Luo & Ben Wang, 2022. "An epistemic characterization of MACA," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(4), pages 995-1024, June.
    15. Oikonomou, V.K. & Jost, J, 2013. "Periodic strategies and rationalizability in perfect information 2-Player strategic form games," MPRA Paper 48117, University Library of Munich, Germany.
    16. Jagau, Stephan & Perea, Andrés, 2022. "Common belief in rationality in psychological games," Journal of Mathematical Economics, Elsevier, vol. 100(C).
    17. Andrés Perea & Elias Tsakas, 2019. "Limited focus in dynamic games," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(2), pages 571-607, June.
    18. Heifetz Aviad & Meier Martin & Schipper Burkhard C., 2021. "Prudent Rationalizability in Generalized Extensive-form Games with Unawareness," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 21(2), pages 525-556, June.
    19. Joseph Y. Halpern & Yoram Moses, 2017. "Characterizing solution concepts in terms of common knowledge of rationality," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(2), pages 457-473, May.
    20. Heifetz, Aviad & Meier, Martin & Schipper, Burkhard C., 2013. "Dynamic unawareness and rationalizable behavior," Games and Economic Behavior, Elsevier, vol. 81(C), pages 50-68.

    More about this item

    Keywords

    Forward induction; Perfect; Extensive-form rationalizability; Iterated admissibility; Permissibility;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:170:y:2018:i:c:p:113-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.