IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1306.6588.html
   My bibliography  Save this paper

Moderate deviations for importance sampling estimators of risk measures

Author

Listed:
  • Pierre Nyquist

Abstract

Importance sampling has become an important tool for the computation of tail-based risk measures. Since such quantities are often determined mainly by rare events standard Monte Carlo can be inefficient and importance sampling provides a way to speed up computations. This paper considers moderate deviations for the weighted empirical process, the process analogue of the weighted empirical measure, arising in importance sampling. The moderate deviation principle is established as an extension of existing results. Using a delta method for large deviations established by Gao and Zhao (Ann. Statist., 2011) together with classical large deviation techniques, the moderate deviation principle for the weighted empirical process is extended to functionals of the weighted empirical process which correspond to risk measures. The main results are moderate deviation principles for importance sampling estimators of the quantile function of a distribution and Expected Shortfall.

Suggested Citation

  • Pierre Nyquist, 2013. "Moderate deviations for importance sampling estimators of risk measures," Papers 1306.6588, arXiv.org.
  • Handle: RePEc:arx:papers:1306.6588
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1306.6588
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2002. "Portfolio Value‐at‐Risk with Heavy‐Tailed Risk Factors," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 239-269, July.
    2. Gao, Fuqing & Wang, Shaochen, 2011. "Asymptotic behavior of the empirical conditional value-at-risk," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 345-352.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    2. Raymond BRUMMELHUIS & Jules Sadefo-Kamdem, 2009. "Var For Quadratic Portfolio'S With Generalized Laplace Distributed Returns," Working Papers 09-06, LAMETA, Universtiy of Montpellier, revised Jun 2009.
    3. Mbairadjim Moussa, A. & Sadefo Kamdem, J. & Terraza, M., 2014. "Fuzzy value-at-risk and expected shortfall for portfolios with heavy-tailed returns," Economic Modelling, Elsevier, vol. 39(C), pages 247-256.
    4. Leung, Melvern & Li, Youwei & Pantelous, Athanasios A. & Vigne, Samuel A., 2021. "Bayesian Value-at-Risk backtesting: The case of annuity pricing," European Journal of Operational Research, Elsevier, vol. 293(2), pages 786-801.
    5. Arismendi, Juan C. & Broda, Simon, 2017. "Multivariate elliptical truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 29-44.
    6. Lu, Zhaoyang, 2011. "Modeling the yearly Value-at-Risk for operational risk in Chinese commercial banks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 604-616.
    7. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    8. Shih-Kuei Lin & Ren-Her Wang & Cheng-Der Fuh, 2006. "Risk Management for Linear and Non-Linear Assets: A Bootstrap Method with Importance Resampling to Evaluate Value-at-Risk," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(3), pages 261-295, September.
    9. José Carlos Ramirez Sánchez, 2004. "Usos y limitaciones de los procesos estocásticos en el tratamiento de distribuciones de rendimientos con colas gordas," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 19(1), pages 51-76, June.
    10. Hulusi Inanoglu & Michael Jacobs, 2009. "Models for Risk Aggregation and Sensitivity Analysis: An Application to Bank Economic Capital," JRFM, MDPI, vol. 2(1), pages 1-72, December.
    11. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2007. "Selecting copulas for risk management," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2405-2423, August.
    12. Peter Christoffersen & Silvia Gonçalves, 2004. "Estimation Risk in Financial Risk Management," CIRANO Working Papers 2004s-15, CIRANO.
    13. Xin Yun & Yanyi Ye & Hao Liu & Yi Li & Kin-Keung Lai, 2023. "Stylized Model of Lévy Process in Risk Estimation," Mathematics, MDPI, vol. 11(6), pages 1-14, March.
    14. Nadarajah Saralees, 2007. "A Truncated Bivariate t Distribution," Stochastics and Quality Control, De Gruyter, vol. 22(2), pages 303-313, January.
    15. Rosenberg, Joshua V. & Schuermann, Til, 2006. "A general approach to integrated risk management with skewed, fat-tailed risks," Journal of Financial Economics, Elsevier, vol. 79(3), pages 569-614, March.
    16. Segoviano, Miguel & Espinoza, Raphael, 2017. "Consistent measures of systemic risk," LSE Research Online Documents on Economics 118947, London School of Economics and Political Science, LSE Library.
    17. Birbil, S.I. & Frenk, J.B.G. & Kaynar, B. & N. Nilay, N., 2008. "Risk measures and their applications in asset management," Econometric Institute Research Papers EI 2008-14, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. Siven, Johannes Vitalis & Lins, Jeffrey Todd & Szymkowiak-Have, Anna, 2009. "Value-at-Risk computation by Fourier inversion with explicit error bounds," Finance Research Letters, Elsevier, vol. 6(2), pages 95-105, June.
    19. Mohamed A. Ayadi & Hatem Ben-Ameur & Nabil Channouf & Quang Khoi Tran, 2019. "NORTA for portfolio credit risk," Annals of Operations Research, Springer, vol. 281(1), pages 99-119, October.
    20. Soumyadip Ghosh & Raghu Pasupathy, 2012. "C-NORTA: A Rejection Procedure for Sampling from the Tail of Bivariate NORTA Distributions," INFORMS Journal on Computing, INFORMS, vol. 24(2), pages 295-310, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1306.6588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.