IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1212.4890.html
   My bibliography  Save this paper

Bollinger Bands Thirty Years Later

Author

Listed:
  • Mark Leeds

Abstract

The goal of this study is to explain and examine the statistical underpinnings of the Bollinger Band methodology. We start off by elucidating the rolling regression time series model and deriving its explicit relationship to Bollinger Bands. Next we illustrate the use of Bollinger Bands in pairs trading and prove the existence of a specific return duration relationship in Bollinger Band pairs trading.Then by viewing the Bollinger Band moving average as an approximation to the random walk plus noise (RWPN) time series model, we develop a pairs trading variant that we call "Fixed Forecast Maximum Duration' Bands" (FFMDPT). Lastly, we conduct pairs trading simulations using SAP and Nikkei index data in order to compare the performance of the variant with Bollinger Bands.

Suggested Citation

  • Mark Leeds, 2012. "Bollinger Bands Thirty Years Later," Papers 1212.4890, arXiv.org, revised Jan 2013.
  • Handle: RePEc:arx:papers:1212.4890
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1212.4890
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harrison Hong & Terence Lim & Jeremy C. Stein, 2000. "Bad News Travels Slowly: Size, Analyst Coverage, and the Profitability of Momentum Strategies," Journal of Finance, American Finance Association, vol. 55(1), pages 265-295, February.
    2. Marco Botta & Luca Colombo, 2016. "Macroeconomic and Institutional Determinants of Capital Structure Decisions," DISCE - Working Papers del Dipartimento di Economia e Finanza def038, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    3. Kiran Paudel & Atsuyuki Naka, 2023. "Effects of size on the exchange-traded funds performance," Journal of Asset Management, Palgrave Macmillan, vol. 24(6), pages 474-484, October.
    4. Arthur, Bruno R. & Katchova, Ani L., 2012. "Accruals Anomaly in Agriculture Financial Economics," 2012 Annual Meeting, February 4-7, 2012, Birmingham, Alabama 119822, Southern Agricultural Economics Association.
    5. Greg Hebb, 2021. "On the performance of Bank-managed mutual funds: Canadian evidence," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 45(1), pages 22-48, January.
    6. Ho, Ron Yiu-wah & Strange, Roger & Piesse, Jenifer, 2006. "On the conditional pricing effects of beta, size, and book-to-market equity in the Hong Kong market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 16(3), pages 199-214, July.
    7. Li, Xu & Vermeulen, Freek, 2021. "High risk, low return (and vice versa): the effect of product innovation on firm performance in a transition economy," LSE Research Online Documents on Economics 120268, London School of Economics and Political Science, LSE Library.
    8. Muhammad Kashif & Thomas Leirvik, 2022. "The MAX Effect in an Oil Exporting Country: The Case of Norway," JRFM, MDPI, vol. 15(4), pages 1-16, March.
    9. Christoffersen, Peter & Ghysels, Eric & Swanson, Norman R., 2002. "Let's get "real" about using economic data," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 343-360, August.
    10. Constantinos Antoniou & John A. Doukas & Avanidhar Subrahmanyam, 2016. "Investor Sentiment, Beta, and the Cost of Equity Capital," Management Science, INFORMS, vol. 62(2), pages 347-367, February.
    11. Radosław Kurach, 2013. "Does Beta Explain Global Equity Market Volatility – Some Empirical Evidence," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 7(2), June.
    12. Chang, Sanders S. & Wang, F. Albert, 2015. "Adverse selection and the presence of informed trading," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 19-33.
    13. Butt, Prof. Khursheed A & Pandow, Bilal Ahmad, 2013. "An analysis into the Stock Selectivity skill of Indian Fund Managers," MPRA Paper 83500, University Library of Munich, Germany, revised 2013.
    14. Shi, Yun & Cui, Xiangyu & Zhou, Xunyu, 2020. "Beta and Coskewness Pricing: Perspective from Probability Weighting," SocArXiv 5rqhv, Center for Open Science.
    15. Abugri, Benjamin A. & Dutta, Sandip, 2014. "Are we overestimating REIT idiosyncratic risk? Analysis of pricing effects and persistence," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 249-259.
    16. Jung‐Soon Shin & Minki Kim & Dongjun Oh & Tong Suk Kim, 2019. "Do hedge funds time market tail risk? Evidence from option‐implied tail risk," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(2), pages 205-237, February.
    17. Ping‐Wen Sun & Yifan Shen & Meifen Qian & Wu Yan, 2021. "Risk of holding stocks with liquidity sensitive to market uncertainty: evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(S1), pages 1993-2029, April.
    18. Onishchenko, Olena & Zhao, Jing & Kongahawatte, Sampath & Kuruppuarachchi, Duminda, 2024. "Investor heterogeneity and anchoring-induced momentum," Journal of Behavioral and Experimental Finance, Elsevier, vol. 42(C).
    19. Lebelle, Martin & Lajili Jarjir, Souad & Sassi, Syrine, 2022. "The effect of issuance documentation disclosure and readability on liquidity: Evidence from green bonds," Global Finance Journal, Elsevier, vol. 51(C).
    20. Carmich[ae]l, Benoit & Samson, Lucie, 2005. "Consumption growth as a risk factor? Evidence from Canadian financial markets," Journal of International Money and Finance, Elsevier, vol. 24(1), pages 83-101, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1212.4890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.