IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1210.3865.html
   My bibliography  Save this paper

Opinion Mining for Relating Subjective Expressions and Annual Earnings in US Financial Statements

Author

Listed:
  • Chien-Liang Chen
  • Chao-Lin Liu
  • Yuan-Chen Chang
  • Hsiang-Ping Tsai

Abstract

Financial statements contain quantitative information and manager's subjective evaluation of firm's financial status. Using information released in U.S. 10-K filings. Both qualitative and quantitative appraisals are crucial for quality financial decisions. To extract such opinioned statements from the reports, we built tagging models based on the conditional random field (CRF) techniques, considering a variety of combinations of linguistic factors including morphology, orthography, predicate-argument structure, syntax, and simple semantics. Our results show that the CRF models are reasonably effective to find opinion holders in experiments when we adopted the popular MPQA corpus for training and testing. The contribution of our paper is to identify opinion patterns in multiword expressions (MWEs) forms rather than in single word forms. We find that the managers of corporations attempt to use more optimistic words to obfuscate negative financial performance and to accentuate the positive financial performance. Our results also show that decreasing earnings were often accompanied by ambiguous and mild statements in the reporting year and that increasing earnings were stated in assertive and positive way.

Suggested Citation

  • Chien-Liang Chen & Chao-Lin Liu & Yuan-Chen Chang & Hsiang-Ping Tsai, 2012. "Opinion Mining for Relating Subjective Expressions and Annual Earnings in US Financial Statements," Papers 1210.3865, arXiv.org.
  • Handle: RePEc:arx:papers:1210.3865
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1210.3865
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:bla:jfinan:v:59:y:2004:i:3:p:1259-1294 is not listed on IDEAS
    2. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan Song & Hongwei Wang & Maoran Zhu, 2018. "Sustainable strategy for corporate governance based on the sentiment analysis of financial reports with CSR," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Chen & Kurov, Alexander & Wolfe, Marketa Halova, 2018. "Relief Rallies after FOMC Announcements as a Resolution of Uncertainty," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 1-18.
    2. Müller, Karsten, 2020. "German forecasters' narratives: How informative are German business cycle forecast reports?," Working Papers 23, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    3. Aaryan Gupta & Vinya Dengre & Hamza Abubakar Kheruwala & Manan Shah, 2020. "Comprehensive review of text-mining applications in finance," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-25, December.
    4. Yan Luo & Linying Zhou, 2020. "Textual tone in corporate financial disclosures: a survey of the literature," International Journal of Disclosure and Governance, Palgrave Macmillan, vol. 17(2), pages 101-110, September.
    5. Jiao Ji & Oleksandr Talavera & Shuxing Yin, 2018. "The Hidden Information Content: Evidence from the Tone of Independent Director Reports," Working Papers 2018-28, Swansea University, School of Management.
    6. Bennani, Hamza & Romelli, Davide, 2024. "Exploring the informativeness and drivers of tone during committee meetings: The case of the Federal Reserve," Journal of International Money and Finance, Elsevier, vol. 148(C).
    7. Qian Wang & Duowen Wu & Lina Yan, 2021. "Effect of positive tone in MD&A disclosure on capital structure adjustment speed: evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(4), pages 5809-5845, December.
    8. Bennani, Hamza, 2018. "Media coverage and ECB policy-making: Evidence from an augmented Taylor rule," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 26-38.
    9. Umar, Tarik, 2022. "Complexity aversion when SeekingAlpha," Journal of Accounting and Economics, Elsevier, vol. 73(2).
    10. Alkaraan, Fadi & Elmarzouky, Mahmoud & Hussainey, Khaled & Venkatesh, V.G., 2023. "Sustainable strategic investment decision-making practices in UK companies: The influence of governance mechanisms on synergy between industry 4.0 and circular economy," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    11. Kirtac, Kemal & Germano, Guido, 2024. "Sentiment trading with large language models," Finance Research Letters, Elsevier, vol. 62(PB).
    12. Hamza Bennani & Cécile Couharde & Yoan Wallois, 2024. "The effect of IMF communication on government bond markets: insights from sentiment analysis," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 160(2), pages 615-656, May.
    13. Alastair Marais, 2024. "Audit Quality and Financial Statement Manipulation: The Moderating Effect of Tone at the Top," International Journal of Economics and Financial Issues, Econjournals, vol. 14(5), pages 220-232, September.
    14. Yingying Xin & Xiao Zeng & Zhengying Luo, 2022. "Customers' tone in MD&A disclosure and suppliers' inventory efficiency: Evidence from China," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(8), pages 3833-3853, December.
    15. Jeffrey J. Burks & Christine Cuny & Joseph Gerakos & João Granja, 2018. "Competition and voluntary disclosure: evidence from deregulation in the banking industry," Review of Accounting Studies, Springer, vol. 23(4), pages 1471-1511, December.
    16. Sapkota, Niranjan, 2022. "News-based sentiment and bitcoin volatility," International Review of Financial Analysis, Elsevier, vol. 82(C).
    17. Chris Florackis & Christodoulos Louca & Roni Michaely & Michael Weber, 2023. "Cybersecurity Risk," The Review of Financial Studies, Society for Financial Studies, vol. 36(1), pages 351-407.
    18. Liu, Pu & Nguyen, Hazel T., 2020. "CEO characteristics and tone at the top inconsistency," Journal of Economics and Business, Elsevier, vol. 108(C).
    19. David Bholat & Stephen Hans & Pedro Santos & Cheryl Schonhardt-Bailey, 2015. "Text mining for central banks," Handbooks, Centre for Central Banking Studies, Bank of England, number 33, April.
    20. Kladakis, George & Chen, Lei & Bellos, Sotirios K., 2023. "Ethical bank disclosures and liquidity creation," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 84(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1210.3865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.