IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1208.6146.html
   My bibliography  Save this paper

Finite quantum mechanical model for the stock market

Author

Listed:
  • Liviu-Adrian Cotfas

Abstract

The price of a given stock is exactly known only at the time of sale when the stock is between the traders. If we know the price (owner) then we have no information on the owner (price). A more general description including cases when we have partial information on both price and ownership is obtained by using the quantum mechanics methods. The relation price-ownership is similar to the relation position-momentum. Our approach is based on the mathematical formalism used in the case of quantum systems with finite-dimensional Hilbert space. The linear operator corresponding to the ownership is obtained from the linear operator corresponding to the price by using the finite Fourier transform. In our idealized model, the Schrodinger type equation describing the time evolution of the stock price is solved numerically.

Suggested Citation

  • Liviu-Adrian Cotfas, 2012. "Finite quantum mechanical model for the stock market," Papers 1208.6146, arXiv.org, revised Sep 2012.
  • Handle: RePEc:arx:papers:1208.6146
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1208.6146
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liviu-Adrian Cotfas, 2012. "A quantum mechanical model for the relationship between stock price and stock ownership," Papers 1207.3412, arXiv.org, revised Sep 2012.
    2. Zhang, Chao & Huang, Lu, 2010. "A quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5769-5775.
    3. Chao Zhang & Lu Huang, 2010. "A quantum model for the stock market," Papers 1009.4843, arXiv.org, revised Oct 2010.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaghobipour, S. & Yarahmadi, M., 2018. "Optimal control design for a class of quantum stochastic systems with financial applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 507-522.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liviu-Adrian Cotfas, 2012. "A quantum mechanical model for the rate of return," Papers 1211.1938, arXiv.org.
    2. Godinho, Cresus F.L. & Abreu, Everton M.C., 2021. "The analysis of the dynamic optimization problem in econophysics from the point of view of the symplectic approach for constrained systems," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    3. Bikramaditya Ghosh & Krishna MC, 2020. "Econophysical bourse volatility – Global Evidence," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 9(2), pages 87-107.
    4. Gao, Tingting & Chen, Yu, 2017. "A quantum anharmonic oscillator model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 307-314.
    5. Liviu-Adrian Cotfas, 2012. "A finite-dimensional quantum model for the stock market," Papers 1204.4614, arXiv.org, revised Sep 2012.
    6. Jack Sarkissian, 2016. "Quantum theory of securities price formation in financial markets," Papers 1605.04948, arXiv.org, revised May 2016.
    7. Pedram, Pouria, 2012. "The minimal length uncertainty and the quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2100-2105.
    8. Jack Sarkissian, 2016. "Spread, volatility, and volume relationship in financial markets and market making profit optimization," Papers 1606.07381, arXiv.org.
    9. Kumar, Sushil & Kumar, Sunil & Kumar, Pawan, 2020. "Diffusion entropy analysis and random matrix analysis of the Indian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    10. Yaghobipour, S. & Yarahmadi, M., 2018. "Optimal control design for a class of quantum stochastic systems with financial applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 507-522.
    11. Xiangyi Meng & Jian-Wei Zhang & Jingjing Xu & Hong Guo, 2014. "Quantum spatial-periodic harmonic model for daily price-limited stock markets," Papers 1405.4490, arXiv.org.
    12. Jasmina Jekni'c-Dugi'c & Sonja Radi' c & Igor Petrovi'c & Momir Arsenijevi'c & Miroljub Dugi'c, 2018. "Quantum Brownian oscillator for the stock market," Papers 1901.10544, arXiv.org.
    13. Kuzu, Erkan & Süsay, Aynur & Tanrıöven, Cihan, 2022. "A model study for calculation of the temperatures of major stock markets in the world with the quantum simulation and determination of the crisis periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    14. Pineiro-Chousa, Juan & Vizcaíno-González, Marcos, 2016. "A quantum derivation of a reputational risk premium," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 304-309.
    15. Meng, Xiangyi & Zhang, Jian-Wei & Guo, Hong, 2016. "Quantum Brownian motion model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 281-288.
    16. Pouria Pedram, 2011. "The minimal length uncertainty and the quantum model for the stock market," Papers 1111.6859, arXiv.org, revised Jan 2012.
    17. Cotfas, Liviu-Adrian, 2013. "A finite-dimensional quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(2), pages 371-380.
    18. Meng, Xiangyi & Zhang, Jian-Wei & Xu, Jingjing & Guo, Hong, 2015. "Quantum spatial-periodic harmonic model for daily price-limited stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 154-160.
    19. Feixing Wang & Yingshuai Wang, 2014. "Quantum prediction GJR model and its applications," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(3), pages 209-224, August.
    20. Li Lin, 2024. "Quantum Probability Theoretic Asset Return Modeling: A Novel Schr\"odinger-Like Trading Equation and Multimodal Distribution," Papers 2401.05823, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1208.6146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.